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ABSTRACT

Induced polarization (IP) imaging is being increasingly
used in near-surface geophysical studies, particularly for hy-
drogeologic and environmental applications. However, the
analysis of IP data error has received little attention, even
though the importance of an adequate error parameterization
has been demonstrated for electrical resistivity imaging.
Based on the analysis of data sets measured in the frequency
range from 1 Hz to 1 kHz, we proposed a model for the
quantification of phase data errors in IP measurements.
The analyzed data sets were collected on an experimental
tank containing targets of different polarizability. Our study
is based on the common practice that the discrepancy of
measurements taken in normal and reciprocal configuration
can be considered as a measure of data error. Statistical ana-
lysis of the discrepancies between normal and reciprocal
measurements revealed that the phase error decreases with
increasing resistance (i.e., signal strength). We proposed an
inverse power-law model to quantify the phase error as a
function of the measured resistances. We found that the ade-
quate implementation of the proposed error model in an in-
version scheme leads to improved IP imaging results in
laboratory experiments. Application to a data set collected
at the field-scale also demonstrated the superiority of the
new model over previous assumptions.

INTRODUCTION

Induced polarization (IP) imaging has emerged as a promising
method for hydrogeologic and environmental studies. In recent
years, several laboratory studies have demonstrated the capability
of the IP method to gain valuable information about textural and
hydraulic properties of the subsurface (e.g., Binley et al., 2005;

Zisser et al., 2010). At the field-scale, it has been demonstrated that
IP imaging can lead to improved lithological characterization
(e.g., Kemna et al., 2004; Hördt et al., 2009; Slater et al., 2010)
and detection of contaminants (e.g., Kemna et al., 2004). It also
has been used for the monitoring of geochemical and biogeochem-
ical processes (e.g., Slater and Binley, 2006; Williams et al., 2009).
This is due to the fact that IP measurements provide information not
only about conduction (resistivity method), but also about the
capacitive properties of the subsurface. Moreover, measurements
collected at different frequencies (referred to as spectral induced
polarization [SIP]) might also provide information about geometri-
cal properties of the pore space (e.g., Pelton et al., 1978; Wong,
1979; Binley et al., 2010; Revil and Florsch, 2010). However,
applications of SIP imaging at the field-scale are still rare because
of the limitations and difficulties associated with data acquisition,
and the lack of studies regarding the parameterization of data error
in inversion schemes.
Every measurement is subject to systematic and random errors. In

the case of electrical methods, the former are commonly associated
with problems during data acquisition such as poor galvanic con-
tact, malfunction of the measuring device, and some sources of
anthropogenic noise. There are particular effects that need to be
considered as sources of systematic errors for SIP measurements.
These include polarization of the electrodes used for current injec-
tion (Dahlin et al., 2002; LaBrecque and Daily, 2008), primarily for
measurements at lower frequencies (<10 Hz), and electromagnetic
coupling (capacitive and inductive effects), which is more signifi-
cant for measurements at higher frequencies (>10 Hz), associated
with the wires connecting the electrodes and the measuring device
(e.g., Pelton et al., 1978). However, this study does not address
systematic errors, because it is assumed that they need to be avoided
or corrected before the inversion.
Random errors cannot be predicted as they arise primarily from

fluctuations in the contact between the electrodes with the ground/
air, and in the injected current and its pathways (e.g., Binley et al.,
1995; LaBrecque et al., 1996; Slater et al., 2000). Previous studies
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have demonstrated that adequate estimation of random errors in
tomographic data sets plays an important role regarding the
quality of the resultant electrical images (e.g., Binley et al., 1995;
LaBrecque et al., 1996). Even though the advantage of a proper
error description in the inversion has been demonstrated for resis-
tance data sets (e.g., Binley et al., 1995; LaBrecque et al., 1996),
there have not yet been any studies investigating this issue for IP or
SIP. So far, a constant error of the phase of the measured impedance
has been assumed (Kemna, 2000), ignoring a possible dependence
of the phase error on resistance (reflecting voltage signal strength
for constant current) or the phase value itself.
The objective of this study is to improve SIP imaging by estab-

lishing an appropriate error model for the inversion of phase data
based on a thorough analysis of tomographic impedance data sets
measured in the laboratory under controlled conditions. Taking into
account the fact that the numerical modeling of typical noise char-
acteristics is practically impossible due to its complexity and the
various possible sources, our analysis is based on performed (real)
measurements and not on synthetic data.
The first section of the study addresses how data error is incor-

porated in the complex resistivity inversion scheme and which error
models have been used so far for the description of resistance and
phase errors. The second section presents the experimental setup
and measurement scheme, a thorough analysis of the (spectral)
raw data, a new phase error model, and the imaging results obtained.
The third section shows the application of the proposed phase error
model to single-frequency field data, followed by discussion and
conclusions.

DATA ERROR TREATMENT IN COMPLEX
RESISTIVITY IMAGING

Complex resistivity inversion scheme

The complex resistivity images presented in this work were
computed using the smoothness-constraint inversion code by
Kemna (2000). Based on a finite-element discretization, the code
calculates the distribution of complex resistivity, ρ ¼ jρjeiϕ (with
magnitude (jρj) and phase (ϕ), and i ¼ ffiffiffiffiffiffi

−1
p

), in a 2D image plane
from a given data set of transfer impedances Zj (j ¼ 1; : : : ; n; with
n being the number of measurements) measured at some frequency
f. The underlying forward model solves either the Helmholtz
equation in the wavenumber domain for a 2.5D modeling problem,
or the Poisson equation in real space for a purely 2D modeling
problem.
The inversion algorithm iteratively minimizes an objective func-

tion composed of the measures of data-misfit and first-order model
roughness, with both terms being balanced by a regularization
parameter. The iteration process is stopped when the rms data-
misfit value,

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
j¼1

jdj − fjðmÞj2
jεjj2

vuut (1)

reaches the value of one for the smoothest possible model. In equa-
tion 1, m represents the model vector (here log-transformed com-
plex resistivity), fjðmÞ the operator of the forward model, dj the jth
datum (here log-transformed complex impedance) with error εj.
In the inversion algorithm, it is assumed that the data errors are

uncorrelated and normally distributed. The complex data error εj
can be considered as a confidence region ellipse in the complex
plane around the data point dj, expressed as

εj ¼ sðln jZjjÞ þ isðϕjÞ; (2)

where sðln jZjjÞ and sðϕjÞ represent the standard deviations of the
log magnitude ln jZjj and phase ϕj, respectively, of the impedance
Zj (note that dj ¼ ln Zj ¼ ln jZjj þ iϕj). In the complex error,
sðln jZjjÞ typically dominates sðϕjÞ and thus controls the inversion
behavior (and stopping criterion) of the complex-valued inversion
scheme. To take the phase error into account quantitatively, addi-
tional, real-valued inversion iterations are run only for the phase
data, once the complex inversion has reached an rms of one. The
iterative inversion process for the phase is stopped when the corre-
sponding rms (for the phase inversions) value,

rmsphase ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
j¼1

�
ImðdjÞ − ImðfjðmÞÞ

sðϕjÞ
�

2

vuut ; (3)

reaches the value of one for the smoothest possible model. For
further details on the inversion algorithm, as well as the underlying
finite-element forward modeling, we refer to Kemna (2000).

Parameterization of resistance error

The final result of the inversion strongly depends on the data error
and its parameterization. However, it is practically impossible to
know the exact variance and distribution of the random errors in
the data. It is, therefore, necessary to make use of approximations
to characterize the data error for the inversion (LaBrecque
et al., 1996).
LaBrecque et al. (1996) proposed a linear relationship between

the measured resistances (denoted as R ¼ jZj in the following) and
their associated error, sðRÞ). This model can be written (e.g., Slater
et al., 2000) as

sðRÞ ¼ aþ bR; (4)

where a is the absolute resistance error at small resistance values
(R → 0∶sðRÞ ¼ a), and b defines the relative (percentage) resis-
tance error for larger resistance values (R → ∞∶sðRÞ ¼ bR). The
parameters a and b can be estimated from the standard deviation
of the difference (ΔR) between normal (Rn) and reciprocal (Rr)
measurements in the data set (LaBrecque et al., 1996). Reciprocal
measurements are those collected when current and potential di-
poles are interchanged from the “normal” configuration.

Parameterization of phase error

In contrast to resistivity imaging, only a few studies have dealt
with the analysis of the error present in impedance phase measure-
ments. In the first reported work (Ramirez et al., 1999), the authors
based their study on the analysis of reciprocal measurements, ana-
logous to LaBrecque et al. (1996). They performed measurements
in a tank with different targets and presented plots of the calculated
absolute value of the discrepancy in the phase (jΔϕj), given by the
difference between normal (ϕn) and reciprocal (ϕr) phase measure-
ments, against the corresponding average value. Based on the
observed distribution of the phase discrepancy, they defined

E228 Flores Orozco et al.

Downloaded 06 Jun 2012 to 131.220.124.51. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



a constant value to describe the error in the phase data, which en-
compasses most of the measurements. In their study, the authors
also reported a noticeable increase in the phase discrepancy for data
collected at high frequencies, indicating a frequency dependence of
the phase error.
The second approach, by Slater and Binley (2006), is based on a

statistical analysis of the difference between normal and reciprocal
measurements (Δϕ, not jΔϕj). Slater and Binley (2006) calculated
the standard deviation of the entire data set and used this value to
define a constant-phase error (sðϕÞ) in the inversion. The images
presented show negligible artifacts and a good correlation with
the expected models. However, the data in their study were origin-
ally collected in the time domain and the measured chargeabilities
were, as a first approximation, linearly converted to phase values for
the inversion in the frequency domain. Therefore, the presented
plots of normal-reciprocal discrepancies in the IP data may only
provide limited insight into the error characteristics of true phase
measurements.

ANALYSIS OF SPECTRAL DATA FROM A
LABORATORY EXPERIMENT

Experimental setup and measurement scheme

To study the characteristics of random error in SIP phase mea-
surements, we collected several tomographic data sets on a physical
tank model. The Plexiglas tank has a length of 1 m, a width of 0.5 m,
and a height of 0.02 m, and was uniformly filled with well-char-
acterized quartz sand and tap water (as saturating electrolyte).
Two filters made of porous polyethylene (with a pore diameter
of approximately 200 μm) were installed (0.1 m away from the
edges, as depicted in Figure 1) to allow dynamic flow experiments
in the tank with a homogeneous flow field. However, the measure-
ments presented here were collected under static (no-flow)
conditions.
Altogether, 80 pin electrodes, made of copper

with a diameter of 4 mm, were installed along the
long walls of the tank (40 on each side) at a con-
stant spacing of 2.5 cm (Figure 1). The electrodes
were mounted into the walls of the tank as de-
picted in Figure 1 to reduce the contact of the
electrodes inside the tank and to fulfill the as-
sumption of point electrodes as required in the
inversion. Taking into account the geometry of
our electrodes, we estimated an error below 5%
for the “worst” case of injecting current at a sin-
gle electrode and measuring the potential magni-
tude at an adjacent electrode (note that there is no
such error for the phase of the potential), based
on the analytical solution provided in Militzer
and Weber (1985). This systematic error rapidly
decreases for larger distances from the current
electrode.
Three different targets were placed inside the

saturated-sand background to build a model with
some degree of complexity. Moreover, different
materials were selected as targets to enhance
different polarization mechanisms, i.e., massive
copper associated with electrode polarization
at the metal-electrolyte interface and pure clay
associated with so-called membrane polarization

at the clay mineral-electrolyte interface. Generally, electrode
polarization has a larger magnitude than membrane polarization
(e.g., Pelton et al., 1978; Slater et al., 2006). More explicitly, the
targets were: (1) a 0.1 m diameter copper cylinder, (2) a 0.1 m
diameter clay cylinder, and (3) a 0.075 m thick clay “layer.”
Our laboratory study was designed as a 2D experiment to better

evaluate the imaging result, to simplify the measuring protocols,
and to reduce data acquisition times (critical for SIP measurements
at low frequencies). However, the presented data analysis approach
is analogously applicable to 3D data sets. To satisfy the assumption
of a 2D case, we avoided changes in the third dimension (the height
of the tank). It was achieved in the following way: (1) the tank con-
tained targets, filters and filling materials that extended uniformly
along the tank height; (2) current injection and measurements of
electrical potential were performed on line electrodes extending
along the entire height of the tank, afterward the collected resistance
values of the electrical impedance were normalized by this height.
From symmetry, the deployment of line electrodes results in elec-
trical fields that vary only in two dimensions, and therefore can be
modeled with our 2D inversion approach. To illustrate the accuracy
of the 2D forward modeling underlying the inversion algorithm for
the given measurement geometry, Figure 2 shows a comparison
between the numerical and analytical solution for an exemplary
injection dipole assuming a constant resistivity inside the tank.
The potential distribution reflects the no-flow boundary conditions
imposed everywhere on the tank boundary. In the analytical solu-
tion, the no-flow conditions at the four edges were accounted for by
computing the superposed potential for 800 fictitious “mirror”
sources (see, for example, Weidelt and Weller [1997] for the
computation of the analytical solution for a point source on the
boundary of a confined body).
An impedance spectrometer with high phase accuracy, described

in detail in Zimmermann et al. (2008), was used to perform the

Figure 1. Top left: Schematic representation of the 2D tank with 80 electrodes. Top
right: Photo of the tank with the targets (anomalies) inside: two cylindrical bodies
(10 cm radius) made of clay and copper, and a 5 cm clay layer. Quartz sand was used
to fill the rest of the tank between the filters, and tap water was used as electrolyte.
Bottom: Schematic representation of the electrodes (dashed circles) and their emplace-
ment in the insulating walls of the tank (represented by solid lines), to reduce the ef-
fective width of the electrodes (solid arcs). Less than one third of the total electrode area
was used to perform measurements, validating the ideal-line-electrode assumption in the
numerical modeling.
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measurements. The equipment has 32 channels for current injection
and 92 channels to collect electrical impedance data in the
frequency domain. To avoid cross-talking between the cables
and to reduce electromagnetic coupling, coaxial cables were used
to connect the electrodes in the tank with the equipment. The elec-
tronic component (to inject the current or to perform potential mea-
surements) was placed at the end of each cable, connected directly
to the electrodes (1 cm distance between electrode and electronic
component). The tank and the measuring equipment were separated
from the other electrical devices to avoid electromagnetic contam-
ination of the data.
The resolution of the imaging results depends on the measure-

ment configuration. This issue has been addressed in numerous stu-
dies for synthetic and field data (e.g., Xu and Noel, 1993; Bing and
Greenhalgh, 2000; Slater et al., 2000; Stummer et al., 2004). In the
present study, two different measuring configurations were used. In
the first configuration (hereafter referred to as cross dipoles), the
current dipole was placed on one side of the tank and the voltage
dipole on the other (as depicted in Figure 3). The measurements
were performed using standard skip-1 (“1” denoting the number of
electrodes that are “skipped” by each dipole) and skip-2 dipole-
dipole schemes. This resulted in a total of 2600 measurements
(1300 normal, 1300 reciprocal).
In the second configuration (hereafter referred to as opposite

dipoles), the current and voltage dipoles were opposite each other
in the tank, i.e., current source (C+) and positive potential (P+) were
located on one side, and current sink (C−) and negative potential
(P−) on the other, as depicted in Figure 3. The total number of mea-
surements here was 950 (475 normal, 475 reciprocal).
The selected configurations minimized the risk of systematic

errors due to polarization of the electrodes and provided a wide
range in the measured resistance values, corresponding to a wide
range in the signal-to-noise ratio (S/N), which allows the proper
investigation of the relationship between phase error and resistance
value.

In addition to the collection of normal and reciprocal data, i.e.,
exchanging C+ with P+ and C− with P−, the measurement system
used repeats each measurement with swapped current injection po-
larity, i.e., internally exchanges C+ with C−. Zimmermann et al.
(2008) showed that averaging the corresponding measurements
eliminates the negative effect of parasitic currents. Data were col-
lected at frequencies between 1 Hz and 1 kHz. At lower frequencies,
overall data acquisition time becomes relatively long, while at high-
er frequencies systematic errors due to electromagnetic coupling
start to occur (Zimmermann et al., 2008).

Data analysis and new phase error model

As in previous studies (Binley et al., 1995; LaBrecque et al.,
1996; Slater and Binley, 2006), we analyzed the discrepancy
between normal and reciprocal measurements, assuming that
this represents a practical measure of data error. The plots of the
normal-reciprocal discrepancies in the resistance (ΔR) against
the corresponding resistance value (R) (Figure 4, left column) be-
have as described by the model proposed by LaBrecque et al. (1996)
(equation 4; note that in Figure 4, ΔR is plotted against log R to
better resolve the distribution of data points). No significant change
is observed in the resistance behavior for the different frequencies
(Figure 4, left column). For the phase measurements, the data col-
lected with the opposite dipoles configurations show a high S/N,
characterized by a low value in the normal-reciprocal discrepancy
of the phase. In contrast, the measurements performed with the
cross dipoles configuration exhibit larger phase values and larger
normal-reciprocal phase discrepancies (Figure 4, middle and
right-hand columns).
Our first approach to describe the error in the phase measure-

ments was based on a relationship between the normal-reciprocal
phase discrepancy (Δϕ) and the absolute value of the phase
(jϕj), similar to the study of Ramirez et al. (1999). However, as
shown in the middle column of Figure 4, the plots exhibit a scattered
distribution. Therefore it does not seem appropriate to characterize
the phase discrepancy as a function of the phase value. Also the
absolute phase discrepancy (jΔϕj) as a function of the absolute
phase value was studied with no better results (plots not shown).
Given the expected correlation between resistance and signal

strength, and signal strength and phase error, we then analyzed

Figure 3. Measurement configurations used to collect data for the
2D tank experiment. Left: “Opposite dipoles” configuration. Right:
“Cross dipoles” configuration. Current electrodes (C+, C−) are in-
dicated by open circles and potential electrodes (P+, P−) by solid
circles.
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Figure 2. 2D modeled numerical (red lines) and analytical (black
lines) distribution of the electrical potential inside the tank due to an
electric current dipole (indicated by the solid circles). The potential
(U) values of plotted equipotential lines are given in V, for a current
of 1 A and a background resistivity of 1 Ωm (Figure 2a). The po-
tential distributions along the right (x ¼ 1 m) and close to the top
(y ¼ − 0.125 m) boundaries are also presented (Figure 2b and 2c,
respectively). The analytical solution was computed by superposi-
tion of the potential of 800 fictitious mirror sources to account for
the no-flow boundary conditions along the four edges of the tank.
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the distribution of the phase discrepancy against the corresponding
resistance value. Here, a systematic trend is noticeable (Figure 4,
right-hand column): higher phase discrepancies are associated with
lower resistances and vice versa. If only the phase data recorded at
high resistance values were considered, the error for the phase could
be described fairly well by a constant value (Figure 4, right
column), in accordance with previous approaches (Kemna, 2000;
Slater and Binley, 2006). However, rejecting the data with low re-
sistance values would reduce the data set by more than 65% leading
to a loss of resolution of the inverted phase image. Therefore, and to
account for the large dynamics in the resistance data, it is reasonable
to consider the error in the phase measurements as a function of
resistance.
For SIP measurements, it is essential to take into consideration

the distribution of the phase discrepancies at different frequencies.
Here, the plots of the phase discrepancy as a function of resistance
display a consistent behavior for all frequencies, as shown in
Figure 4. Based on the observed distribution of the phase discrepan-
cies, we propose an inverse power-law relationship between the
error in the phase (sðϕÞ) and the corresponding resistance (R)

sðϕÞ ¼ aRb; (5)

with b < 0. For b → 0, the proposed model reduces to the constant-
phase error model used in previous studies (Kemna, 2000; Slater
and Binley, 2006).
To calculate the a and b parameters of the phase error model in

equation 5, as well as the a and b parameters of the resistance error
model in equation 4, we performed a so-called bin analysis. This
technique was used by Koestel et al. (2008) to describe the error
in ERT data sets. The procedure is based on the partition of the data
set into several bins with respect to the resistance value. Each bin
contains the normal-reciprocal phase and resistance discrepancies,
respectively, of those data whose resistances fall into the resistance

range of the bin. Once the data are sorted in these bins, the standard
deviation of the corresponding discrepancies is calculated. Finally,
the assumed error model is fitted to the standard deviations of the
different bins as a function of the corresponding mean resistance
value. The obtained parameters a and b are then used to describe
the phase and resistance errors, respectively, according to the as-
sumed model, in the inversion. This procedure was applied here
for each of the data sets collected at the different frequencies.
The bin analysis is based on the assumption that the discrepancy

values contained in each bin obey a normal distribution, so that they
can be described by its standard deviation. To prove whether this
assumption is justified we plotted the histograms of the resistance
and phase discrepancy values for selected bins, based on different
total numbers of bins. Examples of histograms for a selected bin (in
this case the fourth bin) for different numbers of bins are shown in
Figure 5, for different measurement frequencies. It is obvious that
the distribution of data points depends on the number of bins de-
fined in the analysis. Sampling with a high number of bins (here 42)
leads to gaps in the histograms, due to the relatively small number
of data points in the individual bins or even empty bins, which no
longer obey a normal distribution. Sampling with a low number of
bins (here 8) no longer follows a Gaussian-like behavior and is also
insufficient to capture the dynamics in the error.
Therefore, it is important to select an adequate number of bins for

the given number of measurements and range of resistances. To il-
lustrate this issue, we plotted the calculated phase error model
(equation 5) for different numbers of bins (Figure 6). Here we
see that at low frequencies, the deviations between the obtained
curves are generally relatively small. Larger deviations occur for
low resistances and higher frequencies, the latter reflecting the in-
crease of the normal-reciprocal phase discrepancies with frequency
(Figure 4). However, the error models for a moderate number
of bins capture the mean behavior of the curves for all analyzed
frequencies, demonstrating the robustness of the approach.
Importantly, the phase error model differs significantly from the
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Figure 4. Raw tank data collected at different frequencies for both
measurement schemes (blue squares: opposite dipoles; red circles:
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pancy versus log resistance. Middle column: Normal-reciprocal
phase discrepancy versus absolute phase. Right column: Normal-
reciprocal phase discrepancy versus log resistance.
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resistance and phase tank data in the fourth bin based on different
numbers of bins used in the analysis (eight, 16, and 42 bins).
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constant-phase error model (“single-bin” approach) according to
Slater and Binley (2006).
For the results presented here, the bin analysis was performed

using equally sized bins based on a logarithmic resistance scale.
This sampling provided a fairly even distribution of data points over
the bins. In the following, 16 bins were used for the analysis. This is
the maximum number of bins for which each bin still contains at
least 2% of the total number of measurements.

Imaging results

In this section, we present the imaging results obtained with the
error models in equations 4 and 5 for the measurements collected in
the tank. Figure 7 shows the corresponding resistance and phase
error models computed for the data sets at different frequencies,
in comparison with the models obtained from the single-bin
approach by Slater and Binley (2006).
For the inversion, we used a regular grid of square elements. The

size of the elements was given by half of the distance between ad-
jacent electrodes (1.25 cm). Images also were calculated with error
parameters determined according to the approach of Slater and
Binley (2006) and are shown for comparison. The resistivity mag-
nitude image obtained after the inversion of the 1 Hz tank data is
shown in Figure 8. It does not make any noticeable difference
whether the error parameters are defined based on a single- or a
multibin analysis, although the parameter values are different
(see Figure 7). In the image, the lowest resistivity values occur
in the areas beyond the filters in the tank, where only tap water
is present (resistivity below 15 Ωm), whereas the highest resistivity
values are found in the area between the filters, where the quartz
sand is located (resistivity above 30 Ωm). The three targets as well
as the filters are reasonably recovered in position and extension
(cf. Figure 1). Minor artifacts can be identified in the area close
to the filter on the left, but these are probably due to air bubbles
present during data acquisition. We note that the resistivity images
obtained for other measurement frequencies are effectively the same
and are thus not shown.
Figure 9 shows the images obtained from the inversion of the

phase data at different frequencies. With both error approaches,
the copper target is reasonably well recovered (except for the high-
est frequency) as a high-polarizable anomaly (up to 100 mrad) at the
correct location. Below 1 kHz, the phase images calculated with the
proposed phase error model clearly show fewer artifacts than those
obtained with the constant-phase error model (suggesting an over-
fitting of the data for the latter). At 1 kHz, the constant-phase error
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model yields a very smooth image in which no anomalies are visible
at all (suggesting an underfitting of the data), while the new error
model produces an image in which the target still can be located.
The clay targets, on the other hand, are not visible at all in the
images based on the constant-phase error description, while at least
the “clay layer” target is indicated for the higher frequencies toward
the boundaries of the images obtained with the proposed phase error
model. However, the clay targets obviously are difficult to detect
because their response is much weaker than that of the copper target
and they are hence masked in the imaging. The background material
in the tank (sand saturated with tap water) exhibits low polarizabil-
ity (few milliradians), as expected.
To better examine the imaging results in terms of the recovered

frequency dependence, pixel values were picked from the phase
images at the different frequencies at the locations of the polarizable
copper target and the clay layer target (Figure 10). For both pixels
(targets), a systematic spectral behavior is observed, in particular for
the spectra based on the proposed phase error model. In the fre-
quency range considered, the reconstructed phase values for the
copper target decrease continuously with increasing measuring fre-
quency using the new phase error model, while the values remain
relatively constant up to approximately 200 Hz and then decrease
steeply with increasing frequency for the constant-phase error
model. For the clay target, a spectrum continuously increasing with
frequency is obtained with the new error model, while the constant-
phase error model produces a spectrum with a phase maximum
around 100 Hz. Although the true spectral signature of the targets
is not known, with the constant-phase error model spectral
responses are recovered which contradict expectations — this
is not the case for the results obtained with the proposed error mod-
el. Copper in an electrolyte is known to produce a typical Cole-Cole
phase response (e.g., Kemna et al., 2000), which obviously does not
correspond to the observed flat and then abruptly decreasing phase
response using the constant-phase error model. Clay is expected to
show a response with increasing phase values up to the kHz range
(e.g., Slater et al., 2006), as actually obtained with the new error

model, but not consistent with the result using a constant-phase
error model. These outcomes clearly demonstrate the sensitivity
of imaged spectral characteristics with respect to the phase error
description used in the inversion, and they suggest that the proposed
phase error model produces more reliable results.

APPLICATION TO SINGLE-FREQUENCY
FIELD DATA

To validate our approach in a field-scale application, we repro-
cessed cross-borehole impedance data that were collected at the hy-
drological test site at Krauthausen, Germany (Kemna et al., 2004b),
which is operated by Forschungszentrum Jülich. Several studies
have been performed at the site, including electrical surveys, and
its hydrogeologic characteristics are well known (see Kemna
et al., 2002; Hördt et al., 2007; Tillmann et al., 2008; Müller
et al., 2010).

Setup

Briefly, the area is defined by a 9 m thick aquifer, the basement of
which is located at an approximate depth of 11 m. The aquifer is
characterized by layers of gravel and sand corresponding to fluvial
Rur sediments, overlain by a loess layer. For the impedance mea-
surements, a total of five boreholes, defining a section of 27.5 m in
length, were equipped with copper electrodes. Each borehole con-
tains 13 electrodes between 3 and 9.5 m below ground surface
(bgs), with an electrode separation of 0.5 m. Impedance magnitude
and phase data were collected with the RESECS instrument by Geo-
Serve at a frequency of 0.125 Hz. Measurements were performed
between adjacent wells, using a skip-2 “cross dipoles”measurement
protocol. Consistent with the tank measurements, data were col-
lected in normal and reciprocal configurations, resulting — after
rejection of obvious outliers — in a total of 706 magnitude and
phase readings for the subsequent error analysis and inversion.

Results

The analysis of the field data revealed qualitatively the same dis-
tribution of normal-reciprocal discrepancies as a function of resis-
tance as found for the laboratory data (Figure 11): a linear increase
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of the discrepancy in the resistance with resistance value, and an
inverse power-law relationship between discrepancy in the phase
and resistance value. Like the laboratory data, the field data were
inverted using the resistance error model by LaBrecque et al.
(1996), with parameters determined from the two different (single-
and multibin) approaches and using the two different (constant-
phase and power-law) error models for the phase. However,
considering the smaller range of resistance values and the smaller
number of measurements compared to the laboratory data sets, the

multibin analysis was based on only six bins to determine the a and
b parameters of the respective error models.
The obtained image of resistivity magnitude is again effectively the

same for both methods of choosing the parameters of the error model,
and hence only the result based on the single-bin analysis (a ¼
1 mΩ and b ¼ 1.2%) is shown (Figure 12). The image reflects well
the known geologic situation at the site. It exhibits a unit character-
ized by relatively low resistivity values (around 50 Ωm) located be-
tween 4 and 6 m bgs, which is embedded in a unit with moderate
resistivity values (around 100 Ωm) extending down to 8 m depth.
These units coincide with the known series of middle gravel, middle
sand, and fine gravel layers. The high-resistive feature (around
250 Ωm) at the bottom of the image plane delineates a gravel unit
at approximately 9 m depth, on top of interbedded strata of sand,
gravel, and clay characterized by even lower resistivity values.
The phase error models obtained from the single-bin and multibin

approaches are shown in Figure 13. Although the range of resis-
tance values is much smaller than for the tank data (cf. Figures 6
and 7), a noticeable dependence of the phase error upon resistance is
still observed for the multibin approach.
The corresponding phase images are shown in Figure 14. Both

images are characterized by laterally continuous units. In general,
the polarizability is weak and varies only between −2 and
−6 mrad. The top layer reveals the highest absolute phase values

(around −5 mrad) down to 5 to 6 m bgs, likely
to be associated with a nonnegligible clay frac-
tion in this region of middle gravel and middle
sand (cf. Figure 12). Below is a low-polarizable
(around −3 mrad), 2 to 3 m thick unit, corre-
sponding to fine gravel, followed again by a
subtle polarizability increase with depth in the
middle gravel layer and below (cf. Figure 12).
When comparing the two error model ap-
proaches, the low-polarizable unit is shown with
better contrast for the new approach. This is ob-
viously a consequence of the overall smaller
phase error resulting from the multibin analysis
(see Figure 13), meaning that the data are fitted
to a higher degree. Although the difference in the
phase imaging results for the two error models is
less significant than for the tank data (because
the range of measured resistances is much smal-
ler), it nevertheless indicates the superiority of
the new approach.

DISCUSSION

For tomographic data sets, high resistances are associated with
high S/Ns (if the current is fairly constant). Thus it is reasonable
to describe the error present in electrical impedance data sets as
a function of resistance. Analogous to the case of impedance mag-
nitude, in the previous sections we demonstrated the significant cor-
relation between measured resistance and the phase error. Taking
the observed dependency into account in the inversion by means
of an appropriate error model helps to avoid the overfitting of phase
data corresponding to low resistances and the underfitting of phase
data corresponding to high resistances — as is the case for the
assumption of a constant (i.e., independent of resistance) phase er-
ror (cf. Figure 6). The adequate parameterization of the error is par-
ticularly important for SIP data sets, independent of measurement

Figure 12. Resistivity magnitude image inverted from the field data using the error mod-
el in equation 4 with parameters based on the Slater and Binley (2006) approach. Solid
circles indicate the position of electrodes in the five boreholes. Lithologic column of the
Krauthausen site is shown on the left side (after Kemna et al., 2004b).
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frequency. Although the overall error level typically increases with
measurement frequency (see Figure 6), the problem of over- or un-
derfitting remains the same. Accordingly, we find a rather erratic
behavior of the recovered spectral response using a constant-phase
error, while the images computed with the proposed error model
provide a signature in agreement with expectations (Figure 10).
For the laboratory experiment, the true dimensions of the copper

target might be viewed as being better resolved in the lower-
frequency phase images obtained with a constant-phase error than
in those obtained with the proposed error model (see Figure 9).
However, this improved resolution is obtained at the cost of con-
siderable artifacts in the images (and is a typical inversion phenom-
enon in the case of overfitting), which could easily lead to
misinterpretations in the case of unknown targets. For the field
study, we found an enhanced contrast (i.e., better resolution) in
the phase images calculated with the proposed error model, without
the occurrence of noticeable artifacts. This indicates that the
proposed error model provides a fair compromise between image
resolution and image reliability, in harmony with the philosophy
of a smoothness-constraint inversion approach.
It is critical that the selected number of bins and their distribution

ensure a homogeneous distribution of the data over the bins, to al-
low for a proper statistical analysis in each bin. In an initial data
analysis step, obvious outliers, which may influence the chosen
bin size and distribution, should be removed. Furthermore, the data
points contained in each bin should exhibit a Gaussian distribution,
to fulfill the assumption of a random error used in the inversion
algorithm. The definition of an adequate number of bins may be
particularly challenging for field data, where the total number of
measurements may be considerably smaller than in our laboratory
experiments. In addition, depending on the measuring protocol
used, only a relatively narrow range of resistances may be covered,
incapable of revealing the systematic dependence of phase error
upon resistance. For a reliable determination of the parameters
of the proposed error model, the resistance range in a data set should
be as large as possible, obviously favoring dipole-dipole protocols
or combinations thereof. However, even for the considered field
data set, where resistances only varied over half an order of
magnitude (see Figure 13), the proposed error model yields a phase
image with improved contrast.
The inversion scheme used in this study is implemented in terms

of the logarithm of impedance, mapping logarithm of resistance and
phase into real and imaginary components of the data. An alterna-
tive approach is to directly invert the real (Z 0) and imaginary (Z 0 0)
components of impedance (e.g., Zimmermann et al., 2008, Commer
et al., 2011). Accordingly, data error analysis and parameterization
may also be performed in terms of real and imaginary components.
However, both quantities scale with resistance, as they are given by

Z 0 ¼ R cos ϕ; (6)

Z 0 ¼ R sin ϕ; (7)

and thus it is plausible to again assume a systematic dependence of
their errors upon resistance (note that for the typically low
phase values in geophysical applications Z 0 ≈ R and Z 0 0 ≈ Rϕ).
Analogous to Figure 4, Figure 15 shows the distribution of the
misfit between normal and reciprocal measurements collected on
the experimental tank in terms of real and imaginary components
(Z 0, Z 0 0). Here, the discrepancy (between normal and reciprocal

measurements) of the real and imaginary components plotted as
a function of the real component (ΔZ 0, ΔZ 0 0 versus Z 0) exhibits
a linear behavior, similar to the model of LaBrecque et al.
(1996) (ΔR versus R) from equation 4. Based on this, we suggest
that the model proposed by LaBrecque et al. (1996) may be adopted
to describe the error for real and imaginary components

ΔZ 0 ¼ K1 þ K2Z 0; (8)

ΔZ 0 0 ¼ K3 þ K4Z 0; (9)
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where K1, K3 represent the absolute errors for the real and imagin-
ary components, respectively, and K2 and K4 the respective relative
errors. However, a further validation of this approach is beyond the
scope of this study. Similar to the analysis of the magnitude and
phase data, other relationships, for example the normal-reciprocal
discrepancy in the imaginary component as a function of the
absolute value of the imaginary component, did not provide any
clear trend.

CONCLUSIONS

In this paper, we propose a new model to quantify the phase error
in impedance data sets, as well as a methodology to compute the
underlying parameters of the proposed error model. The analysis of
impedance data sets collected in the laboratory and the field re-
vealed a significant correlation between the discrepancy between
normal and reciprocal phase measurements, on the one hand,
and the corresponding mean resistance value, on the other hand.
The observed behavior of decreasing phase discrepancy with
increasing resistance is consistent for measurements collected at dif-
ferent frequencies, over a wide frequency range. Other dependences
of the phase discrepancy, such as its dependence on the absolute
phase value, also were studied, but did not show a similarly
systematic behavior.
Based on the observed behavior of the phase discrepancy,

we propose an inverse power-law relationship to describe the phase
error as a function of resistance. Inversion of the considered data
sets was performed with two error parameterization approaches,
i.e., a constant-phase error and a new power-law model. The images
computed with the power-law model demonstrated the advantage of
the new parameterization as they showed fewer artifacts and, re-
spectively, higher contrast than those obtained with the assumption
of a constant-phase error. We attribute this to an underestimation of
the error — and correspondingly an overfitting — of phase data
associated with low resistances on the one hand, and an overesti-
mation of the error — and correspondingly an underfitting — of
phase data associated with high resistances on the other hand, when
using the constant-error approach. The power-law model takes the
observed variation in the phase error into account properly and
provides improved images with a satisfying compromise between
resolution and reliability (absence of artifacts). The latter aspect is
particularly important if spectral characteristics are to be deduced
from multifrequency phase images because spatial imaging artifacts
may lead to significant distortions of spectral signatures, making a
reliable interpretation impossible.
The quantification of phase data errors is critical for obtaining

reliable phase images, and the proposed error model might represent
an adequate parameterization of universal applicability. We consid-
er an appropriate error description essential for quantitative IP/SIP
imaging as it is increasingly becoming of interest, for instance,
for hydrogeophysical and biogeophysical investigations. As far
as monitoring applications are concerned, however, further studies
are required concerning the most appropriate phase error model in a
time-lapse inversion scheme.
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