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INTRODUCTION 

 
The key parameters for reservoir characterization are porosity 
and permeability. A variety of field, logging and laboratory 
methods provide porosity. Permeability can be determined by 
gas flow measurements in the lab. Permeability prediction in a 
field or logging survey is based on correlations to other 
measurable parameters. Beside porosity, the pore size is an 
important parameter that is closely related to permeability. 
However, the determination of a reliable value of an effective 
pore size is a challenging problem. The Mercury Intrusion 
Capillary Pressure method (MICP) provides the distribution of 
the pore throat radius. Nuclear Magnetic Resonance (NMR) is 

another useful method that can be used to estimate the pore 
size distribution. MICP is a laboratory method. Under 
favourable conditions, NMR is also applicable in field 
surveys.  
Induced Polarization (IP) has been proposed to be another 
potential method providing access to the pore size 
distribution. Several authors observed relations between the 
pore size and different types of relaxation times (e.g. Scott and 
Barker, 2003; Binley et al., 2005; Kruschwitz et al. 2010). It is 
difficult to explain all these observations by a uniform 
physical model. Instead of a pore size distribution, a so-called 
characteristic pore size is assumed. Most authors prefer to use 
the dominant pore size determined from MICP that 
corresponds to the pressure of maximal incremental mercury 
intrusion. Similarly, a characteristic relaxation time is 
assumed, which can be determined by different procedures. 
The resulting time constant from fitting procedures related to 
models of the Cole-Cole type is a widely used approach. 
Others use the mean relaxation time resulting from Debye 
decomposition (Nordsiek and Weller, 2008). In other 
approaches, if the measured IP spectra show a maximum in 
the curves of imaginary part of conductivity or the phase angle 
the frequency of the maximum is simply transformed into a 
relaxation time (Scott and Barker, 2003; Revil et al., 2015). 
The latter approach is quite simple because it does not require 
any fitting procedure. We used this approach for a set of 
sandstone samples that has been investigated in different labs. 
All IP spectra show a maximum of imaginary part of 
conductivity inside the investigated frequency interval 
between 2 mHz and 100 Hz. The effective hydraulic radius of 
this set of samples has been determined from permeability and 
formation factor. We evaluate whether any relation between 
characteristic relaxation time and effective hydraulic radius 
exists. 
 

METHOD 
 
The simplest model of permeability prediction is based on 
bundles of uniform capillaries that pervade a solid medium. 
Based on geometric considerations and considering the 
Hagen-Poiseuille equation, permeability k can be easily 
determined by the geometric quantities porosity φ, pore radius 
r and tortuosity T according to the following equation: 

 .
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The ratio T/φ can be replaced by the formation factor if the 
electric tortuosity is assumed to equal the hydraulic tortuosity. 
Equation 1 can be used to determine an effective hydraulic 

SUMMARY 
 
Permeability estimation from spectral induced 
polarization (SIP) measurements is based on a 
fundamental premise that the characteristic relaxation 
time (τ) is related to the effective hydraulic radius (reff) 
controlling fluid flow. The approach requires a reliable 
estimate of the diffusion coefficient of the ions in the 
electrical double layer. Others have assumed a value for 
the diffusion coefficient, or postulated different values for 
clay versus clay-free rocks. We examine the link between 
τ and reff for an extensive database of sandstone samples 
where mercury porosimetry data confirm that reff is 
reliably determined from a modification of the Hagen-
Poiseuille equation assuming that the electrical tortuosity 
is equal to the hydraulic tortuosity. Our database does not 
support the existence of 1 or 2 distinct representative 
diffusion coefficients but instead demonstrates strong 
evidence for 6 orders of magnitude of variation in an 
apparent diffusion coefficient that is well correlated with 
both reff and the specific surface area per unit pore 
volume (Spor). Two scenarios can explain our findings: 
(1) the length-scale defined by τ is not equal to reff and is 
likely much longer due to the control of pore surface 
roughness; (2) the range of diffusion coefficients is large 
and likely determined by the relative proportions of the 
different minerals (e.g. silica, clays) making up the rock. 
In either case, the estimation of reff (and hence 
permeability) is inherently uncertain from SIP relaxation 
time. 
 
Key words: pore radius, mercury intrusion capillary 
pressure, spectral induced polarization, relaxation time. 
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radius reff of any sample if permeability and formation factor 
are known: 

 Fkreff 8= .    (2) 

A good estimation of reff is a decisive step in permeability 
prediction because the variation in the formation factor is 
considerably lower than in reff. 
A variety of models have recently been proposed to relate a 
characteristic pore size Λ with a characteristic relaxation time 
τ0 (Revil et al., 2012; 2015): 
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with D(+) being the diffusion coefficient of the ions in the 
Stern layer. A characteristic relaxation time τpeak can easily be 
determined from the frequency of the maximum (peak 
frequency fpeak) of the spectrum of imaginary part of 
conductivity σ”( f): 
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assuming that a measurable maximum exists inside the 
investigated frequency range. We equate the effective 
hydraulic radius reff that is determined from equation 2 to the 
characteristic pore size Λ. The resulting equation 

 peakeff Dr τ)(2 +=    (5) 

relates the relaxation time τpeak to the effective hydraulic radius 
reff. We check the general validity of equation 5 for a set of 
sandstone samples. 
 

SAMPLES 
 
Our set of sandstone samples originates from several studies 
including 21 Eocene sandstone samples of the Shahejie 
formation (CS samples, China, Zhang and Weller, 2014), 
eight samples of the Cretaceous Bahariya formation (Egypt), 
and 17 samples from different locations in Germany 
(Bentheimer, Buntsandstone, Elbe-sandstone, Flechtinger, 
Green sand, Obernkirchen, Röttbacher, Udelfanger), France 
(Fontainebleau), Poland (Skala), the UK (Helsby), and 
Vietnam (Dong Do). All samples are characterized by a 
measurable maximum in the spectrum of the imaginary part of 
conductivity. The permeability and the formation factor of all 
samples are known and the effective hydraulic radius reff has 
been determined by equation 2. Additionally, MICP 
measurements and the specific surface area per unit volume 
(Spor) of most samples are available. 
 

RESULTS 
 
Most studies regard the dominant pore throat radius (rdom) 
determined by MICP as a suitable characteristic pore size. The 
dominant pore throat radius indicates for most samples a slight 
overestimation of reff (Figure 1). We find for our samples a 
better agreement between reff and the median pore throat 
radius r50 determined from MICP. It can be seen from Figure 2 
that the deviation from reff becomes less if rdom is replaced by 
r50. Nevertheless, both r50 and rdom can be regarded as suitable 
parameters to estimate the effective hydraulic radius reff. The 
good agreement between r50 and reff enables the evaluation of 
equation 5 even in the case that no MICP data are available. 
Figure 3 displays the relation between τpeak and reff in a double 
logarithmic plot. The red lines indicate the expected curve for 

a fixed diffusion coefficient. The solid red line corresponds to 
a value of D(+) = 3.8 × 10-12 m²/s that has been proposed by 
Revil (2013) for clayey material. The dashed line indicates the 
diffusion coefficient of clean sand with D(+) = 1.3 × 10-9 m²/s 
(Revil, 2013). Two of our clean sandstone samples (BU12 and 
F1) fall close to the dashed line. However, the other sample 
close to the dashed line (ES-14) is an Elbe-sandstone with 
abundant clay minerals. Some shaly sandstone samples follow 
the trend of the solid red line. However, a considerable 
number of samples fall below the solid line. The large scatter 
in the data points, along with numerous data points falling 
below the solid red line, does not support the existence of two 
fixed values of the diffusion coefficient as proposed by Revil 
(2014).  
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Figure 1.  Comparison of reff determined according to 
equation 2 and the dominant pore throat radius rdom from 
MICP for a set of sandstone samples. 
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Figure 2.  Comparison of reff determined according to 
equation 2 and the median pore throat radius r50 from 
MICP for a set of sandstone samples. 
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Figure 3.  Comparison between τpeak and reff in a double 
logarithmic plot for a set of sandstone samples.  
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Figure 4.  Relation between effective hydraulic radius reff 
and apparent diffusion coefficient Da for a set of sandstone 
samples. 
 
Assuming the validity of equation 5, an apparent diffusion 
coefficient Da can be defined: 

peak

eff
a

r
D

τ2

2

= .     (6) 

This apparent diffusion coefficient, which can be determined 
for each sample, is presented as a function of reff in Figure 4. It 
varies over a range of nearly six orders of magnitude. A 
remarkable trend is observed: the increasing effective 
hydraulic radius is accompanied by an increasing apparent 
diffusion coefficient. The fitting equation reads 

 
77.1782.0 effa rD = .    (7) 

with Da given in µm2/s and reff. in µm. Kruschwitz et al. 
(2010) reported a similar trend for their set of sandstone 
samples. They determined an apparent diffusion coefficient 
from the dominant pore throat diameter ddom and the time 
constant of a generalized Cole-Cole fitting model. The 
resulting graph indicates the proportionality 

 
68.1

doma dD ∝     (8) 

with a similar exponent. 
Figure 5 displays the relation between the specific surface area 
per unit pore volume Spor and the apparent diffusion 
coefficient Da. An increasing specific internal surface is 
related to a decrease in Da. 
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Figure 5.  Relation between specific surface area Spor and 
apparent diffusion coefficient Da for a set of sandstone 
samples. 
 

DISSCUSSION 
 
The wide variation in apparent diffusion coefficient and its 
dependence on effective hydraulic radius and the specific 
surface area raises doubt regarding the applicability of 
equation 5 for estimating pore geometric characteristics of 
sandstone samples. There are two main concerns: 
(1) The effective hydraulic radius cannot be the relevant pore 
size for IP relaxation if a nearly constant diffusion coefficient 
is assumed for the clayey sandstone samples. The diffusion 
path would be considerably longer than the pore radius for 
most samples that are displayed below the solid red line in 
Figure 3. The increasing pore surface roughness, which is 
reflected by larger values of Spor, generates a considerable 
surface tortuosity and longer diffusion paths along the pore 
surface. It can be assumed that the true length of the diffusion 
path can be determined by IP relaxation time, but this length is 
not simply related to the effective hydraulic radius. 
(2) A decrease in the ion mobility and consequently in the 
diffusion coefficient caused by increasing clay content and 
increasing specific surface area offers an alternative 
explanation of the experimental findings. It can be expected 
that a stronger binding of ions at the surfaces of clay minerals 
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dominates the diffusion in smaller pores. A variation of the 
diffusion coefficient with the type and amount of clay makes 
the application of equation 5 for estimating reff difficult. 
A permeability prediction that assumes the validity of 
equation 5 and a constant diffusion coefficient will only work 
for those samples that are indicated close to the red lines in 
Figure 3. In the specific case of the plotted red lines, the 
apparent diffusion coefficient is close to the assumed diffusion 
coefficient for either clayey material (solid line) or clean 
sandstones (dashed line). The majority of samples indicates a 
diffusion coefficient different from these two fixed values. 
Most samples with an apparent diffusion coefficient lower 
than the value of clayey material (D(+) = 3.8 × 10-12 m²/s) are 
characterized by an effective pore radius smaller than 2 µm 
and a permeability smaller than 1 mD. Revil et al. (2015) 
exclude these samples from their approach of permeability 
prediction based on IP relaxation time and formation factor. 
The binary binning into clayey material and clean sands has 
been recently disputed (Revil, 2014; Weller et al., 2014). Our 
experimental findings do not support the existence of two 
fixed values of the diffusion coefficient. Considering the 
varying clay content in our samples, it would be difficult to 
define a sharp boundary between the two groups. What 
concentration of clay minerals would be tolerated in a 
sandstone for it to be referred to as clean sand? In our opinion, 
a sandstone should be characterized by an effective diffusion 
coefficient representing a weighting between the different 
minerals. The data points falling between the two red lines in 
Figure 3 indicate the existence of sandstone samples with 
behaviour between clean sand and clayey material. 
All approaches of permeability prediction that are based on IP 
relaxation time remain problematic. Sandstone samples that do 
not indicate a characteristic relaxation time in the investigated 
frequency cannot be considered. As shown in our study, the 
relation between IP relaxation time and pore size is far from 
unique. Alternative approaches, which are based on 
quadrature conductivity instead of relaxation time, have 
proved to be successful in permeability prediction of 
sandstones and unconsolidated material (e.g. Weller et al., 
2015). 
 

CONCLUSIONS 
 
Our study presents experimental evidence that the effective 
hydraulic radius, which is a key parameter in permeability 
prediction, cannot be determined by the IP relaxation time in a 
direct way. The apparent diffusion coefficient that relates 
effective hydraulic radius and IP relaxation time varies over 
six orders of magnitude. The assumption of a constant 
diffusion coefficient suggests that the true diffusion path is 
much larger than the effective hydraulic radius. A strongly 
varying diffusion coefficient has to be assumed if the effective 
hydraulic radius is accepted to be related to the diffusion 
length. The practical use of IP relaxation time is strongly 
restricted if both effective hydraulic radius and diffusion 
coefficient are variable parameters in sandstone samples. 
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INTRODUCTION 
  

Calcite is one of the most abundant minerals in the earth crust 

and frequently precipitates when alkalinity and pH increase 

(Vancappellen et al., 1993). Calcite precipitation modifies the 

rock porosity, and can have positive or harmful effects for the 

mechanical and transport properties of porous media. Calcite 

precipitation in porous media has broad applications in 

geotechnical engineering for soil strengthening (DeJong et al., 

2006) and in environmental studies for the sequestration of 

heavy metals (Sturchio et al., 1997), radionuclides (Fujita et 

al., 2004) and CO2 in geological formations (Pruess et al., 

2003). However, calcite precipitation can also have undesirable 

effects such as the decrease of the efficiency and permeability 

of reactive barriers for the remediation of aquifers (Wilkin et 

al., 2003).  

Wu et al. (2010) performed complex conductivity 

measurements and modeling of calcite precipitation on glass 

beads packed column. From their imaginary part of complex 

conductivity data, the evolution of calcite precipitation in 

porous media was clearly observed. The empirical Cole-Cole 

model (Cole and Cole, 1941) was used by Wu et al. (2010) to 

interpret the complex conductivity signature of calcite 

precipitation in glass beads. However, the lack of physical 

processes in the Cole-Cole model to interpret the complex 

conductivity data restricts the understanding of the effects of 

calcite precipitation on the evolution of the pore structure and 

connectivity in glass beads column. The induced polarization 

of calcite precipitates needs to be further clarified using a 

mechanistic complex conductivity model accounting for the 

EDL properties and the particle size distribution. In this study, 

a mechanistic model for the induced polarization of calcite is 

proposed, which depends on the surface charge density and 

ions mobility of the counter-ions in the Stern layer and on the 

particle size distribution. The predictions of the model are 

compared to the imaginary conductivity data of Wu et al. 

(2010), and the evolution of the pore structure during calcite 

precipitation in glass beads is estimated accordingly. 

 

 

THEORETICAL BACKGROUND AND 

COMPARISON WITH EXPERIMENTAL DATA 

 
We consider a porous medium containing particles, glass 

beads grains (of millimetric size) and calcite crystals (of 

micrometric size), and water (subscript “w”). The complex 

conductivity model is presented at Figure 1. 

 
 

Figure 1. Sketch of thecomplex conductivity model of the 

porous medium.  

 

Maxwell-Wagner polarization occurs at the boundary between 

the different phases (solid, water) possessing different 

electrical properties. The differential effective medium (DEM) 

theory (Sen et al., 1981) is used to compute the electrical 

conductivity of the porous medium according to the 

conductivity of the particles and liquid. The complex surface 

SUMMARY 
 

When pH and alkalinity increase, calcite frequently 

precipitates and hence modifies the petrophysical 

properties of porous media. The complex conductivity 

method can be used to directly monitor calcite 

precipitation in porous media because it is very sensitive 

to the evolution of the pore structure and its connectivity. 

We have developed a mechanistic grain polarization 

model considering the electrochemical polarization of the 

Stern layer surrounding calcite particles. This model 

depends on the surface charge density and mobility of the 

counter-ions in the Stern layer. Our induced polarization 

model predicts the evolution of the size of calcite 

particles, of the pore structure and connectivity during 

spectral induced polarization experiments of calcite 

precipitation on glass beads pack. Model predictions are 

in very good agreement with the complex conductivity 

measurements. During the first phase of calcite 

precipitation experiment, calcite crystals growth, and the 

inverted particle size distribution moves towards larger 

calcite particles. When calcite continues to precipitate and 

during pore clogging, inverted particle size distribution 

moves towards smaller particles because large particles do 

not polarize sufficiently. The pore clogging is also 

responsible for the decrease of the connectivity of the 

pores, which is observed through the increasing electrical 

formation factor of the porous medium.  

 

Key words: calcite precipitation, complex conductivity, 

Stern layer, particle size, pore clogging. 
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conductivity of the particles of different sizes is calculated 

considering the superposition principle and using the particle 

size distribution (PSD) (Leroy et al., 2008). The complex 

surface conductivity of the particle is computed using the 

spectral induced polarization model of Leroy et al. (2008) 

generalized to the electrochemical polarization of different 

counter-ions at the mineral/water interface. The specific 

surface conductivity of the particle is calculated considering 

the superposition of the AC (Stern layer) and DC current 

densities (diffuse layer) (Figure 2). The distribution of ions in 

the Stern and diffuse layer of the calcite/water interface is 

computed using an electrostatic surface complexation model 

(Li et al., 2016) (Figure 3).  

 
 

Figure 2. Sketch of the complex conductivity model of 

Leroy et al. (2008) for particles of different sizes 

surrounded by discontinuous Stern layers and overlapping 

diffuse layers in a saline aqueous solution. 

 

 

 
Figure 3. The basic Stern model used by Li et al. (2016) to 

describe the calcite/water interface (calcite (1 0 4) surface) 

when calcite is in contact with a NaCl and CaCl2 aqueous 

solution at equilibrium with a pCO2. 

 

Wu et al. (2010) monitored calcite precipitation in glass beads 

pack using spectral induced polarization measurements in the 

frequency range [0.1 10000 Hz] under controlled laboratory 

conditions. Their porous medium consisted in smooth glass 

beads of mean diameter of 3 mm packed in a transparent 

plexiglass column 8.4 cm long and 2.54 cm wide. The 

measured porosity was equal to 30%. Wu et al. (2010) mixed 

two aqueous electrolytes, one containing CaCl2 at a 

concentration of 26.2 milli mol L-1 (mM) (water electrical 

conductivity 0.635 S m-1), and the other containing Na2CO3 at 

a concentration of 29 mM (water electrical conductivity 0.567 

S m-1) at a fixed pH value of 9 to favor calcite precipitation in 

glass beads column. The saline CaCl2 solution was injected 

through the bottom of the column to establish an equilibrated 

baseline state. Following this, a second stream of Na2CO3 

solution was introduced into the column from the injection 

port at the middle section to initiate calcite precipitation. The 

ionic concentrations were diluted once inside the column due 

to the equal volume mixing of these two solutions (initial ionic 

concentrations divided by two). The flow rate of both 

solutions was kept at 36 L min-1 for the duration of the 

experiment, which continued for 12 days past injection of 

Na2CO3. In the complex conductivity experiment of Wu et al. 

(2010), sodium ion is the dominating cation in solution. 

The evolution of the modeled imaginary conductivity as a 

function of frequency and time (in days) is in good agreement 

with the measurements of Wu et al. (2010) (Figure 4). The 

model parameters are presented at Table 1. 

 

Table 1. Parameters of our complex conductivity model. 

Parameters Values 

Ions mobility in the Stern layer (m2 s-1 V-1) 5.7×10-8 

Surface charge density in the Stern layer (C m-2) 0.1 

Initial cementation exponent of the particles 1.5 

Initial glass beads porosity  0.30 

Bulk pore water conductivity (S m-1) 0.356 

 

 
Figure 4. Imaginary conductivity spectra of calcite 

precipitation on glass beads pack as a function of time in 

days before the pore clogging by the calcite precipitates (a.) 

and during the pore clogging by the calcite precipitates 

(b.). The predictions of the complex conductivity model are 

represented by the lines and the symbols represent the 

imaginary conductivity measurements of Wu et al. (2010). 

 

The evolution of the modeled particle size distribution during 

the precipitation experiment is presented at Figure 5. 

 

 
Figure 5. Evolution of the computed calcite particle size 

distribution during calcite precipitation experiments. 

 

The quadrature conductivity measurements of Wu et al. (2010) 

were inverted using the Matlab code developed by Florsch et 

al. (2014) to obtain the discretized relaxation time   and particle 

size distribution. Florsch et al. (2014) used generalized 

relaxation basis functions (such as the generalized Cole–Cole 

function) and the L-curve approach to optimize the damping 

parameter required to get smooth and realistic inverse 

solutions (read Florsch et al., 2014 for further information 

relative to the inversion procedure). The relaxation time 

distribution was converted to the particle size distribution 

using the surface mobility value of the counter-ions in the 

Stern layer. 
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The smallest particles size information is missing due to lack of 

the complex conductivity measurements at high frequency (> 

10 kHz). Before clogging (referred to phase 1 in Wu et al., 

2010, at day 9), the modeled particles size increases as 

experiment continues (also shown in Figure 5). It is consistent 

with the visual observations from SEM (scanning electron 

microscopy) images in the experiment (Wu et al., 2010). The 

calcite particles increase approximately from less than 1 to 20 

µm, as reported by Wu et al. (2010). During the first stage of 

calcite precipitation, the modeled volume of the pore water 

decreases due to calcite precipitation (Figure 6). 

As the calcite precipitation experiment continued over 9 days, 

the clogging occurred in the sample holder. At the second 

stage, the formation factor of glass beads increases 

significantly as shown in Figure 6, from 6.08 to 7 (day 10), 11 

(day 11) and 12 (day 12). The changes of the formation factor 

is due to the loss of connectivity of glass beads pores affected 

by the clogging even though the porosity of the sample (glass 

beads, porous medium) has a tiny change. The modeled 

particle size distribution obtained from the inverted imaginary 

conductivity spectra (quadrature conductivity) moves towards 

smaller particles as experiment continues (Figure 4b and 

Figure 5b). This could be explained by that the large calcite 

particles created during the clogging process do not play an 

important role in the complex conductivity spectra (they do 

not polarize sufficiently) and only smaller particles are the 

effective ones contributed to the complex surface conductivity. 

Calcite precipitation induces a smaller pore volume fraction, 

therefore, a slight increase of the formation factor F. The 

occurrence of pore clogging may explain the increase of the 

cement exponent from 1.5 to 2 for glass beads materials, 

which leads the formation factor F increasing from 6.08 to 12 

under the same porosity. 

 

 
Figure 6. Computed relative volume of the fluid to the 

volume of the porous medium and relative volume of the 

bulk water to the volume of the fluid mixture and 

formation factors F and  F’ changes during the calcite 

precipitation experiment of Wu et al. (2010). The pore 

clogging happens at day 9, the formation factor of the 

porous medium (glass beads) changes dramatically. 

 

 

CONCLUSIONS 
 

A mechanistic complex conductivity model was used to 

interpret spectral induced polarization experiments of calcite 

precipitation on millimetric glass beads containing CaCl2 and 

Na2CO3 aqueous electrolytes in equal concentration. The 

conductivity model considers the electrochemical polarization 

of the Stern layer surrounding calcite particles and depends on 

the surface site density and surface mobility of counter-ions in 

the Stern layer, which were kept constant during the 

simulation of the precipitation experiment. The particle size 

distribution, porosity and electrical formation factor evolution 

during the precipitation process were inverted from imaginary 

conductivity data.  

Model predictions are in very good agreement with the 

measured imaginary conductivity spectra and the microscopy 

observations of the evolution of the pore structure and 

connectivity during calcite precipitation. The tangential 

mobility of the counter-ions in the Stern layer is found to be 

similar to their mobility in bulk water. The kinetic of calcite 

precipitation in glass beads column is described by considering 

two different stages, one before the pores clogging where 

modeled particle size distribution moves to larger particles due 

to the growth of calcite crystals, and another during the pores 

clogging where only the smaller particles influence the 

polarization response. During the first stage of calcite 

precipitation, the electrical formation factor of glass beads 

remains constant and the modeled pore water volume 

decreases due to calcite precipitation. During the second stage 

of calcite precipitation, the electrical formation factor of glass 

beads increases considerably because of the loss of pores 

connectivity due to the clogging process and the modeled pore 

water volume remains constant. These observations can be 

explained by the aggregation of the calcite precipitates merging 

at the surface of glass beads, which can significantly alter the 

connectivity and current paths of the pore space of glass beads 

even though the total porosity remains nearly unchanged. 

This study shows that spectral induced polarization can be an 

efficient and cost effective geophysical method to monitor 

non-invasively and continuously calcite precipitation in porous 

media because of its sensitivity to polarization processes 

occurring at the mineral/water interface. A mechanistic 

induced polarization model is also necessary to interpret 

induced polarization experiments in terms of evolution of 

particle size distribution, pores structure and connectivity 

during calcite precipitation. 
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INTRODUCTION 

  
Laboratory measurements of the complex electrical 
conductivity in a broad frequency range (i.e. mHz to kHz) 
using spectral induced polarization (SIP) measurements have 
shown promise to characterize important hydrological 
properties (e.g. hydraulic conductivity) and biogeochemical 
processes (Kemna et al. 2012). However, translating these 
findings to field applications remains challenging, and 
significant improvements in spectral electrical impedance 
tomography (EIT) are still required to obtain images of the 
complex electrical conductivity in a broad frequency range 
(mHz to kHz) with sufficient accuracy in the field.  
Many field investigations with EIT are limited to frequencies 
below 10 Hz (e.g. Flores-Orozco et al., 2011), mostly because 
the higher frequencies are strongly affected by 

electromagnetic coupling, especially inductive coupling, when 
long multicore cables are used. In order to remove inductive 
coupling effects from spectral EIT measurements, Zhao et al. 
(2013, 2015) proposed a combination of calibration 
measurements and model-based corrections to account for 
inductive coupling within and between multicore cables. The 
aim of this study is to evaluate to what extent recent 
improvements in data correction, inversion, and processing of 
wideband field EIT measurements have improved the 
accuracy and spectral consistency of images of the real and 
imaginary part of the electrical conductivity. For this, we use 
data from two case studies where spectral EIT measurements 
were used to i) monitor infiltration and ii) characterize aquifer 
heterogeneity.    
 

METHODS AND RESULTS 
 
We made EIT measurements in the mHz to kHz frequency 
range using a modified version of the data acquisition system 
described in Zimmermann et al. (2008) that also allows 
reciprocal measurements. The system has 40 channels, which 
can be used for current as well as potential measurements. 
Potentials are measured simultaneously at all electrodes 
relative to system ground, which allows the calculation of 
arbitrary voltage pairs in post-processing. 
 
Case study I: infiltration experiment 
 
Time-lapse surface EIT measurements were performed during 
an infiltration experiment to investigate the spectral complex 
electrical conductivity as a function of water content. We used 
a transect of 28 non-polarizable Cu/CuSo4 electrodes with an 
electrode spacing of 25 cm. Wetted sponges were used to 
obtain a homogeneous contact to the uneven soil surface. A 
considerable advantage of this type of electrode is their large 
contact area with the soil surface, which reduces the electrode 
contact impedance. The electrodes were connected to the EIT 
system using individual 5 m long twisted-pair cables as used 
in laboratory EIT experiments. Therefore, inductive coupling 
between cables was not considered in this first case study.  
Inversion of the EIT data was done using the 2.5 D inversion 
code CRTomo developed in Kemna (2000). This code uses 
log-transformed magnitude and phase as data and iteratively 
minimizes the error-weighted root mean square error between 
data and model until convergence criteria have been reached 
for each frequency independently. EIT measurements were 
filtered and processed as outlined in Kelter et al. (2015), and 
the integral spectral parameters (i.e. normalized total 
chargeability and mean relaxation time) were obtained using 
Debye decomposition of the complex electrical resistivity 
spectra for each pixel of the inverted tomograms. Data error 
was obtained from filtered reciprocal measurements where 
current and potential electrodes were exchanged. 

SUMMARY 
Field applications of wideband electrical impedance 
tomography (EIT) remain challenging, despite recent 
advances to obtain images of the complex electrical 
conductivity with sufficient accuracy for a broad range of 
frequencies (mHz – kHz). The aim of this study is to 
evaluate to what extent recent improvements in the 
inversion and processing of wideband field EIT 
measurements have improved the accuracy and spectral 
consistency of images of the real and imaginary part of 
the electrical conductivity. In a first case study, time-
lapse surface EIT measurements were performed during 
an infiltration experiment to investigate the spectral 
complex electrical conductivity as a function of water 
content. State-of-the-art data processing and inversion 
approaches were used to obtain images of the complex 
electrical conductivity in a frequency range of 100 mHz 
to 1 kHz, and integral parameters were obtained using 
Debye decomposition. Results showed consistent spectral 
and spatial variation of the phase of the complex 
electrical conductivity in a broad frequency range, and a 
complex dependence on water saturation. In a second 
case study, borehole EIT measurements were made in a 
well-characterized gravel aquifer. These measurements 
were inverted to obtain broadband images of the complex 
conductivity after correction of inductive coupling effects 
using a recently developed procedure relying on a 
combination of calibration measurements and model-
based corrections. The inversion results were spatially 
and spectrally consistent in a broad frequency range up to 
1 kHz only after removal of inductive coupling effects. 
 
Key words: electrical impedance tomography, inductive 
coupling, wideband measurements 
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Figure 1 shows a compilation of spectral complex electrical 
imaging results obtained during and after infiltration. The 
results clearly show that the electrical conductivity, the 
normalized total chargeability, as well as the mean relaxation 
time all increased with increasing soil water content. For all 
three integral spectral parameters, a clear maximum is 
obtained for the measurement where stationary flow 
conditions were assumed (20131003-2), whereas minimum 
values are obtained for the first measurement in driest 
conditions. The imaging results also indicate a two layered 
soil in both the electrical conductivity and normalized total 
chargeability images. Figure 2 presents inverted phase spectra 
of complex electrical conductivity for selected pixels. The 
consistency of the spectra across a broad frequency range is 
evident, and this confirms the feasibility of wideband spectral 
EIT for near-surface applications with short cable lengths 
where inductive coupling can be neglected. 
 
Case study II: Aquifer characterization 
 
Wideband borehole EIT measurements were made to 
investigate the well-characterized heterogeneous unconfined 
aquifer at the Krauthausen test site (Müller et al. 2010). The 
base of the aquifer is located at a depth of 11 to 13 meter and 
consists of intermitting layers of clay and silt, whereas the 
upper part of the aquifer consists of 3 layers with Rur 
sediments at the top followed by the upper and lower Rhine 
sediments. In contrast to the first case study, multicore 
electrode chains as developed in Zhao et al. (2013) were used 
with an electrode separation of 1 m. EIT measurements were 
performed using two electrode chains in borehole B75 and 
B76 using both single well and cross-well electrode 
configurations. Therefore, calibration measurements and 
numerical modelling of the cable layout of the electrode 
chains were used in order to correct for inductive coupling 
effects. The details of this correction procedure are described 
in Zhao et al. (2015). Processing and inversion of the 
measured impedance data was identical to the first case study. 
Analysis of reciprocal measurements showed that data error 
was very similar for uncorrected and corrected data. This 
confirms that errors associated with inductive coupling are of 
reciprocal nature, as already postulated by Zhao et al. (2015). 
Figure 3 shows inversion results for the imaginary part of the 
electrical conductivity at four frequencies for uncorrected and 
corrected data. In the low frequency range (until 10 Hz), the 
images of the uncorrected and the corrected data show very 
similar results, whereas the images of the uncorrected data 
show increasingly strong artefacts for frequencies higher than 
10 Hz. In contrast to the erratic images of the uncorrected 
data, the corrected data shows the same structures that are 
present in the lower frequencies and even an increase in the 
contrast for the high frequencies, indicating the value of 
spectral information in complex electrical imaging. Spectral 
electrical images were compared with estimates of clay 
content and gravel content determined from material extracted 
during drilling of the wells and showed good agreement. 
 

CONCLUSIONS 
 
In this study, we presented wideband EIT measurements 
obtained in two field studies. The results show that the use of 
dedicated EIT measurement equipment in combination with 
calibration measurements and model-based correction 
methods in addition to appropriate data processing and 
inversion strategies allow the accurate determination of 
spectral electrical properties in the mHz to kHz frequency 
range. In particular, spatially and spectrally consistent 

inversion results were obtained up to a frequency of 1 kHz 
during an infiltration experiment, which illustrated the ability 
of spectral EIT to monitor near-surface vadose zone processes 
using surface electrodes and short cables. In the case of 
aquifer studies that extend beyond the top few meters of the 
soil, longer cables are required that may lead to unwanted 
inductive coupling effects. In this study, it was shown that a 
previously developed combination of calibration 
measurements and model-based corrections successfully 
removed inductive coupling effects and provided spatially and 
spectrally consistent electrical properties up to 1 kHz. Overall, 
we conclude that wideband spectral EIT has matured to such 
an extent that routine applications are becoming feasible. 
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Figure 1.  Spectral complex electrical inversion results in terms of DC-conductivity, normalized total chargeability, and mean 
relaxation time, obtained by pixel-wise debye-decomposition for all spectral electrical measurements during the irrigation 
experiment. Black dots indicate the positions of the electrodes. 
 
 

 
 
Figure 2. Inverted phase spectra of complex electrical conductivity, obtained for certain pixels at a lateral position of 3 m 
along the profile and depths of 20 cm (left) and 60 cm (right) for representative measurement dates. Solid lines illustrate the 
obtained Debye-decomposition fits. 
 



 

 

 

 
 
 

 
 
Figure 3.  EIT imaging results for frequencies of 2, 10, 100 and 1000 Hz for uncorrected (top) and corrected (bottom) data in 
terms of the imaginary part of the complex electrical conductivity. 
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INTRODUCTION 
 

The electrical conductivity of earth materials can be frequency 

dependent with the effective conductivity decreasing with 

decreasing frequency due to the buildup of electric charges 

that occur under the applied electric field. Effectively, the rock 

is electrically chargeable. Controlled-source electromagnetic 

(EM) methods excite the earth using either galvanic (a 

generator attached to two grounded electrodes) or inductive 

source (arising from currents flowing in a wire loop). A typical 

EIP survey layout (Siegel, 1959) is shown in Figure 1.  
 

Grounded wire

 
 

Figure 1. Conceptual diagram of a ground-based galvanic 

source with half-duty cycle current waveform.  
 

It consists of grounded electrodes carrying a current waveform 

(like the square wave shown) and electrodes to measure 

voltage differences. When the ground is chargeable the 

received voltage looks like that in Figure 2. The decay in the 

off-time is the IP effect. To interpret observed IP data, a two-

stage inversion is usually deployed (Oldenburg and Li, 1994). 

The first step is to invert late on-time data (V0) using a DC 

inversion to obtain the background conductivity. The second 

step is to use the obtained conductivity to generate a sensitivity 

function, and then invert late off-time data (Vs); this is often 

called DC-IP inversion.  
 

 
Figure 2. A typical overvoltage effects in EIP data.   
 

Although application of this method has been successful, a 

main concern is the second step.  The time decaying fields 

are assumed to be purely the result of IP phenomena and any 

EM induction effects in the data are ignored. This assumption 

can be violated when the earth has a significant conductivity 

and  EM coupling can remain even in the late off-time. 

Removing the effects of EM induction from the measured data 

is referred to as EM-decoupling and it has been a focus of 

attention for many years. Most analyses have used simple 

earth structures: half-space and layered earth to ameliorate its 

effects (Wynn and Zonge, 1975). However, with our current 

capability to handle 3D forward modelling and inversion it is 

timely to revisit this issue.  
 

In a recent work (Kang and Oldenburg, 2016), we developed a 

workflow for inverting airborne IP data using inductive 

sources. This involved three main steps: a) inverting early time 

TEM data to recover a 3D conductivity, b) EM-decoupling 

(forward modelling the EM response and then subtracting it 

from the observations), and c) IP inversion to recover pseudo-

chargeability distribution at each time channel. The current 

problem of inverting IP data using grounded sources follows 

the same workflow but some aspects are greatly simplified 

because EIP measures data when electric fields, and charge 

accumulations, have reached a steady state. This provides 

another data set from which information about the electrical 

conductivity can be extracted.     
 

A major difference between conventional EIP inversion and 

our approach is the use made of early time channels in the EIP 

data. In conventional work these have been considered as 

“noise” and hence been thrown away. However, we consider 

these as “signal” to recover conductivity. In this study, we 

apply a 3D TEM-IP inversion workflow to the synthetic 

galvanic source example (gradient array). This will include the 

three steps in the workflow listed above but the first step is 

SUMMARY 
 

Electrical induced polarization (EIP) surveys have been 

used to detect chargeable materials in the earth. For 

interpretation of the time domain EIP data, the DC-IP 

inversion method, which first invert DC data (on-time) to 

recover conductivity, then inverts IP data (off-time) to 

recover chargeability, has been successfully used 

especially for mining applications finding porphyry 

deposits. It is assumed that the off-time data are free of 

EM induction effects. When this is not the case, an EM-

decoupling technique, which removes EM induction in 

the observation, needs to be implemented. Usually 

responses from a half-space or a layered earth are 

subtracted. Recent capability in 3D TEM forward 

modelling and inversion allows us to revisit this 

procedure. Here we apply a 3D TEM-IP inversion 

workflow to the galvanic source example. This includes 

three steps: a) invert DC and early time channel TEM data 

to recover the 3D conductivity, b) use that conductivity to 

compute the TEM response at later time channels. 

Subtract this fundamental response from the observations 

to generate the IP response, and c) invert the IP responses 

to recover a 3D chargeability.  This workflow effectively 

removes EM induction effects in the observations and 

produces better chargeability and conductivity models 

compared to conventional approaches.  
 

Key words: Induced polarization, EM-decoupling, 

galvanic source, time domain EM, 3D inversion 
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altered so that we invert the DC data, and early time channels 

of TEM data, to recover the 3D conductivity.  
 

SEPARATION OF EM AND IP RESPONSE 
 

Assuming the earth has chargeable material, the observed 

responses from any TEM survey has both EM and IP 

responses. To be more specific, we first define the complex 

conductivity in the frequency domain as  
 

              (1) 
 

where  is the conductivity at infinite frequency, and  is 

angular frequency (rad/s). For the Cole-Cole model from 

Pelton et al. (1978), 
 

,         (2)  
 

where  is intrinsic chargeability,  is time constant, and c is 

frequency dependency. Following Smith et al. (1988), the 

observed datum including both EM and IP effects can be 

defined as  
 

,                 (3) 
 

where dF and dIP are respectively the fundamental and IP 

responses. Here the fundamental response is , 

where F[] is a Maxwell’s operator; this takes the conductivity 

and computes EM responses without IP effects. Note that 

 when =0. A main goal of our 3D TEM-IP 

inversion workflow is to evaluate the dF and dIP components. 

To illustrate the challenge, we perform a simple TEM forward 

modelling using a galvanic source as shown in Figure 1. We 

inject a half-duty cycle rectangular current through a grounded 

wire. A chargeable body is embedded in the earth.  Figure 3 

shows the measured voltage at a pair of potential electrodes on 

the surface. It is different from the conventional over-voltage 

diagram shown in Figure 2. At early on- and off-time, we 

observe significant EM induction effects. It is only at late off-

times that we can identify typical over-voltage effects which 

are characteristic of the IP responses. The fact that EM 

dominates the data at early times and IP effects dominate the 

late-time data suggests it may be possible to separate the EM 

and IP responses in time.  
 

For a clearer demonstration of this, we view only the off-time 

data, and plot them on a log-log plot as shown in Figure 4. 

Black, blue, and red lines correspondingly indicate observed, 

fundamental, and IP responses; solid and dotted lines 

distinguish negative and positive data. At early times, the 

fundamental response is much greater than the IP data; this is 

the region of EM dominance. At later times, the IP signal is 

much greater than the fundamental; this is the region of IP-

dominance. Importantly, there is an intermediate time region 

when both EM and IP are considerable. Our following 

inversion workflow is based upon this natural separation of 

EM and IP in time. 

 

3D TEM-IP INVERSION WORKFLOW 
 

Our inversion workflow is based upon Kang and Oldenburg 

(2016) which was built for an inductive source case, but is 

applicable here. Figure 5 shows the 3D TEM-IP inversion 

workflow to be applied. The first step is to invert the TEM data 

to recover the 3D  model. As in our inductive source 

work, we use only early time data that we feel are not IP-

contaminated. We note that these early time data have 

previously been considered as “noise” in conventional 

analyses and hence have been thrown away. However, here we 

consider these as “signal” and use them to recover a better 

conductivity model. Another possibility for obtaining a 

background conductivity is to use the steady-state fields just 

prior to switching the current off. These are the potentials that 

are traditionally used in DC-IP inversion. Inversion of these 

data yields a conductivity that is  but if  is 

small enough then this will be a reasonable approximation to 

. The inversion of DC data is analogous to inverting only 

one frequency in a frequency-domain data set. Hence it might 

be expected that inverting data at multi-times (equivalent to 

multi-frequencies) would produce a better result. Our 

experience verifies this. Nevertheless, the DC fields are 

valuable and we wish to use them. The options are to invert the 

DC and TEM data together, or treat them as two separate data 

sets. For the present we have chosen the latter since we then 

do not have to contend with the issue that the DC fields are 

really . The approach implemented here is first to invert the 

DC data and then use the resulting model as a starting and 

reference model for the TEM inversion 

 
Figure 3. Observed voltage with EM induction effects. EM 

effects dominate the early off-time data.   
 

EM 

Induction

Intermediate

IP

 
Figure 4. Transients of observed (black line), fundamental 

(blue crosses) and IP (red line) at the off-time in the log-log 

plot. Solid and dotted lines distinguish positive and 

negative datum.  
 

The second step of the workflow is EM decoupling. The 

estimated conductivity model, est, from step 1 is used to 

generate raw IP data according to  
 

,             (4) 
 

where dobs is the observed data, F [est] is estimated 

fundamental data. Here, we identify that the predicted 

fundamental response might be different from true 

fundamental response, because est is not the same as . 

Potential errors in raw IP data will be significant especially at 

early times, but they will decrease as time increases. The 

effective region for EM-decoupling will be in the intermediate 

time when both EM and IP are considerable (Figure 4). Note 
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that at late time (IP-dominant) EM-decoupling may not be 

required.  
 

The final step in the process is to carry out the IP inversion. 

We adopt the conventional IP inversion approach (e.g. 

Oldenburg and Li, 1994), which uses a linear form of IP 

responses written as  
 

,               (5) 
 

where G is the sensitivity function and  is the pseudo-

chargeability. The conductivity model est is required to 

generate the sensitivity matrix.  We invert each time channel 

of IP data separately, and recover pseudo-chargeability at 

multiple times. Interpreting this recovered pseudo-

chargeability to extract intrinsic IP information such as , , 

and c is possible, but we do not treat that in this study. 

 

 
 

Figure 5. A 3D TEM-IP inversion workflow for galvanic 

source TEM data.  

 

GALVANIC SOURCE EXAMPLE 
 

Synthetic TEM data 
 

As an example, we use a galvanic source and multiple 

receivers which measures voltages as shown in Figure 3. Four 

blocks (A1-A4) presented in Figure 6 have different  and 

 values (see Table 1); all blocks have  =0.5 sec and c=1  

(Debye model). Only A2 and A3 blocks are chargeable. The 

length of the transmitter wire is 4.5 km and potential 

differences between two electrodes along easting lines are 

measured at 625 locations. The measured time channels are 

logarithmic-based ranging from 1-600 ms (60 channels). 

Computed responses at 5, 80, and 350 ms are shown in Figure 

7. At 5 ms, EM induction effects are dominant, and all data are 

negative. At 80 ms, both EM and IP effects are considerable, 

but still all data are negative. Note that A2 and A3 are 

chargeable, but A1, which is conductive, is not. Therefore, it is 

difficult to differentiate chargeability and conductivity 

anomalies just by looking at observed data at 80 ms. At 350 

ms, EM induction effects are significantly decayed, hence IP is 

dominant. Only A2 and A3 show positive anomalies that 

originate from chargeability. Depending on the measured time 

window, and IP parameters of chargeable bodies, we could 

have data in IP-dominant time or not. Hence, whenever our 

measured time window is not late enough to be considered as 

IP-dominant time, EM-decoupling is crucial step. Note that the 

A1 anomaly at 80 ms could be misinterpreted as a chargeable 

response, if this is the latest time channel.  
 

Table 1. Conductivity at infinite frequency and intrinsic 

chargeability values for five units: A1-A4 and half-space. 
 

 
 

3D DC and TEM inversion 
 

To recover , we use the first six channels of the TEM data 

(1-6 ms), which have minor contamination from IP. In 

addition, we have DC data which contain IP effects, but have 

minor EM induction effects. We first invert the DC data, and 

recover 3D conductivity. By using the recovered DC 

conductivity as a reference model, we invert the TEM data. 

The recovered conductivity models from the 3D DC and TEM 

inversions are shown in Figure 8. The conductive blocks A1 

and A3 are much better imaged with the TEM inversion.  

 

A1 A2

A3 A4

A1 A2

A3 A4

 
Figure 6. Plan and section views of the 3D mesh. Black 

solid lines show the boundaries of four blocks (A1-A4). 

Only A2 and A3 are chargeable. Arrows indicate a wire 

path for the galvanic source.  
 

5 ms 80 ms 350 ms

A1 A2

A3 A4

A1 A2

A3 A4

A1 A2

A3 A4

 
Figure 7. Plan maps of the observed TEM data at 5 ms (left 

panel), 80 ms (middle panel), 350 ms (right panel). Dashed 

and solid contours differentiate negative and positive data.   
 

A1 A2

A3 A4

A1

A3 A4

(a) DC inversion

A1 A2

A3 A4

A1

A3 A4

(b) TEM inversion

 
Figure 8. Recovered conductivity models from (a) DC and 

(b) TEM inversions.  
 

EM-decoupling 
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The next step is EM-decoupling. We implement Eq. (4) using  

est from the TEM inversion (Figure 8b). In Figure 9, we 

present observed, predicted and raw IP data at 80 ms. At this 

time, both EM and IP effects are considerable. Our EM-

decoupling procedure effectively removes EM effects due to 

conductivity especially for regions close to A1 (not chargeable) 

and A3 (chargeable). Removing the conductive anomaly at A1 

is crucial, because this could have been misinterpreted as 

chargeable anomaly.  
 

The crucial aspect of our EM-decoupling procedure is the 

effect of the background conductivity. To show this we 

consider two other candidates, namely a) true , b)  half-

space conductivity (half). We compare performance of EM-

decoupling for all three different conductivity models. Figure 

10 shows predicted fundamental response and IP data 

generated using the three conductivity models. The EM 

response computed using  clearly shows two conductive 

anomalies. A similar conclusion can be drawn from the results 

using est. The A1 and A3 conductive anomalies are effectively 

removed resulting in A1 being stronger anomaly than A3. As 

shown in the left panel Figure 7, A3 was stronger in the 

observation. The half-space conductivity however does a poor 

job at predicting the EM effects and the resultant raw IP data 

have numerous artifacts, especially at A1 and A3 where there 

are conductive blocks and where the IP data is overestimated. 

If these data are input to a 3D IP inversion, they produce 

strong artefacts from which incorrect conclusions can be 

drawn.  
 

A1 A2

A3 A4

dobs dI P
r awF [σest ]

 

Figure 9. Plan maps of observed (left panel), estimated 

fundamental (middle panel) and raw IP (right panel) at the 

80 ms.  
 

EM

IP

σ1 σest σhal f

 
Figure 10. Comparison of EM (top panel) and IP (bottom 

panel) responses obtained from three different conductivity 

models. (a) true , b) half, and c) est from TEM 

inversion.  
 

3D IP inversion 
 

To recover 3D pseudo-chargeability, we invert raw IP data sets 

at 80 ms obtained using the estimated conductivity, est, from 

the TEM inversion. This conductivity is used to generate the 

linearized sensitivities as outlined in Kang and Oldenburg 

(2016). This linear system is inverted with the added constraint 

of positivity on the chargeability (Oldenburg and Li, 1994). 

Depth weighting, invoked for the airborne case, was not used 

for this 3D IP inversion. The recovered 3D pseudo-

chargeability model is shown in Figure 11. The two true 

chargeable bodies, A2 and A3, are well imaged without 

significant artefacts. It is also noted that the pseudo-

chargeability of A2 is stronger than that for A3. This is 

compatible with the known amplitude from the true IP data 

shown in Figure 10.  
 

CONCLUSIONS 
 

In this study, we have applied the 3D TEM-IP inversion 

workflow to a galvanic source TEM example. First, we 

inverted DC data and recovered a 3D conductivity. Then, by 

using that as a reference model, we inverted six of the earliest 

time channels of TEM data, which have minor IP-

contamination, and recovered a 3D conductivity. These early 

TEM data often have been thrown away because they are 

considered as “noise”. However, by considering them as 

“signal” and inverting them, we recovered a better 

conductivity model. Second, the recovered conductivity, est 

was used in our EM-decoupling procedure to generate raw IP 

data. The procedure was effective for removing EM induction 

in the observations, especially for regions close A1 and A3, 

which had significant conductivity responses. Third, we 

inverted the IP data set generated from the TEM conductivity 

model using conventional 3D IP inversion. The recovered 

pseudo-chargeability successfully imaged two true chargeable 

anomalies A2 and A3. This demonstrates that our TEM-IP 

inversion workflow can be effective for recovering a good 

estimate of electrical conductivity, for removing EM signals 

from IP data, and for obtaining a 3D distribution of pseudo-

chargeability.   
 

A1 A2

A3 A4

A1

A3 A4

A2

 
Figure 11. Plan and section views of the recovered pseudo-

chargeability.  
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INTRODUCTION 
  

Critical raw materials such as Sn, W, In and rare earth metals 

are very important today for producing electronic equipment. In 
the past decades the exploration activities in Germany for 

mineral resources were low and therefore the research in this 

field. Nowadays efforts are undertaken to develop new 

technologies and exploration systems (e.g. using helicopter 
electromagnetics as in the project, where this work is involved 

in). Along with the geophysical exploration, it becomes 

important to know about petrology and the genesis of the 

expected mineral deposits and the knowledge about 
petrophysical characterization of the rocks involved are 

essential.  

This information can then be used for improving (three-

dimensional) images of the electrical resistivity distribution in 
the subsurface and can thus provide indications of mineralized 

deposits and their geological, tectonic, and structural properties.  

 

The main focus in the current research project are antimonite 
deposits. To measure petrophysical parameters such as density, 

resistivity and magnetic susceptibility, samples of antimonite 
and the deposit surrounding material are required. However, at 

least in Germany, in situ samples cannot be obtained anymore 

due to closed mining pits. Only existing samples in rock 

collections are available. The problem is that it is mostly not 
allowed to destroy or cut these samples so new approaches for 

measuring of the complex resistivity have to be developed. The 

following study demonstrate preliminary results of potential 
strategies to overcome the given limitations. 

 

 

MATERIAL AND METHODS  
 
Most of the samples in geological rock collections have an 

approximate size of a fist and exhibit arbitrary geometries 
(Figure 1). It is usually not allowed or even possible to drill 

cylindrical samples matching a common four-point measuring 

cell for measuring the complex resistivity, because the samples 

are too precious, too small or too instable. For a reliable data 
acquisition, three different approaches are pursued:  

 

1.) If possible, cylindrical core samples are measured in the 

measuring cell.  
 

2.) Fist-sized samples with irregular geometry are measured 

using small (nail) electrodes stuck on the rock surface.  

 
3.) Samples with irregular geometry are buried in a sandboxes 

for measuring exact phase values. 

 

 
Figure 1: Picture of an antimonite from the BGR rock 

collection. 

For measuring the complex resistivity * we use an SIP 

(spectral induced polarization) instrument (SIP-ZEL, 

Zimmermann et al., 2008), which provides magnitude (||) and 

SUMMARY 
 

For the geophysical exploration of mineral resources 

knowledge about petrophysical parameters of the expected 

investigation material is essential. If it is not possible to 
measure samples in a common geometry, new approaches 

have to be developed. In this preliminary study three 

approaches for adequate and proper measurements of 

spectral induced polarization at rock samples are 
introduced.  

First results show that additionally to the measurement in 

a common 4-point measuring cell, also measurements with 

stuck electrodes connected to rock samples with irregular 
geometry seem to be promising. Furthermore the detection 

of a buried antimonite sample in a sand-box could be 

demonstrated by the strong phase anomaly it produced. 

Nevertheless further investigations are necessary, such as 
considering possible anisotropy effects and verification of 

the methods for a broader range of samples with irregular 

geometry. Also the electrode material for the 

measurements in the sandbox should be modified to avoid 
unwanted polarization effects. In addition, alternative 

materials for coupling the electrodes directly to the rock 

surface will be tested in the future. 

 
Key words: SIP, laboratory measurement, hard rock 

sample, arbitrary geometry, antimonite 
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phase () of the complex resistivity. These parameters are 

related to the real ( )́ and imaginary (´´) parts of resistivity by 

𝜌∗ = |𝜌|𝑒𝑖𝜑 =  𝜌′ + 𝜌′′ =  
1

𝜎 ∗ 

with * being the electrical conductivity. The magnitude (||) 

and the phase () are associated with:   

|𝜌| =  √𝜌′2 +  𝜌′′2  

and 

𝜑 = arctan [
𝜌′′

𝜌′ ]. 

 

1.) Cylindrical core samples 
 

For the laboratory measurements we use a four-point measuring 

cell (Figure 2Figure 2 a) with stainless steel current electrodes 
at the face side of the cell and potential electrodes (Ni-Co alloy) 

being ring wires placed outside the electrical field in the central 

part of the cell (more information in Kruschwitz 2008). 

The core samples were drilled in cylindrical shape with 2 cm in 
diameter and various lengths (Figure 2Figure 2 b). The cores 

were extracted from two different directions to consider 

possibly occurring anisotropy effects and are measured under 

controlled conditions in a climatic chamber (20°C) at a 
frequency range between 2 mHz and 45 kHz. As coupling agent 

we used an Agar-Agar gel.  

 

The complex resistivity * is then calculated by 

𝜌∗ = 𝑅
𝐴

𝐿
 

where R is the measured resistance. The ratio A/L is the 

geometric factor of the sample holder with the length L between 

the potential electrodes and the cross-section area A. 

 

 
Figure 2: a) 4-point measuring cell. b) Cylindrical core 

samples from antimonite. 

 

 

 

2.) Measurements using stuck electrodes 

 

To measure the complex resistivity at the fist-size samples 
small holes (< 2 mm) were drilled. Silver wire electrodes were 

stuck with conductive epoxy or silverpaint (very well 

conducting glue) at the sample. At least four electrodes are 

needed for a measurement (Figure 3). In our first tests, the 
electrodes are placed in line with a distance of about 1 cm to 

each other. To consider the anisotropy of the samples further 

electrodes on each side are possible. 
 

 
Figure 3: Picture of a rock sample with stuck electrodes. 

 

To digitize the geometry and to calculate the geometry factor 

the samples are scanned by a 3-D scanner (Matter and Form, 

2016). It provides a high resolution and also photographic 
recording (Figure 4). With the exact geometry and the position 

of the electrodes the necessary factors are calculated using a 

tetrahedral Finite-Element mesh that is generated from the 

surface mesh with the mesh generator TetGen (Rücker et al., 
2006). 

 

 
Figure 4: Results from 3-D scan. a) Photographic, b) 3-D 

scan points, c) connection between the scanned points. 

 

3.) Measurements in a sandbox 

 

To measure exact phase values, the fist-sized samples were also 

buried in a sandbox (44 x 25 x 25 cm) filled with pure fully 

saturated quartz sand.  
A principal feasibility study could be shown by Radic (1984). 

Newer result (for the detection of tree roots) can be found in 

Zanetti et al. (2011). 

In our previous studies this sand showed negligible phase 

effects and resistivities in the range of 45 m (fluid 

conductivity: 700 µS/cm/14.3 m). Due to the limited size of 

the sandbox boundary effects may occur and therefore 
resistivity can be overestimated. 

We used 12 stainless steel nails as electrodes, which are 

arranged in line with a distance of 3 cm (Figure 5), so different 

measurement arrays with varying depth levels and multi-
channel recording are possible. An inversion of the data can be 

done with the BERT algorithm (Günther et al, 2006). To 

account for the geometry of the tank, we use a hybrid 2D/3D 

approach, i.e. a 3D forward calculation is combined with a 2D 
inversion (Ronczka et al., 2014). 
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Figure 5: Picture of the sandbox with electrode line. 

 

 

RESULTS AND DISCUSSION 

 
1.) Cylindrical core samples 

 

Example spectra of antimonite core samples are shown in 
Figure 6. All five rock samples were cut from one rock sample 

but with perpendicular orientation (orientation A: 1 and 2; 

orientation B: 3, 4 and 5). The resistivity values (left) are 

clustered: two samples exhibit higher resistivities (10 000 m) 

and three exhibit lower values (~ 2000 m). Unfortunately this 

observation cannot be fully related to the orientation. In 

contrast, the phase values can be related to the orientation: 
higher phases (10 mrad) are associated with orientation B and 

lower (5 mrad) values with A. However, in general the phases 

are relatively small and their behaviour over the entire 

frequency range is more or less constant, except for high 
frequencies, which is assumed to be an artefact caused by 

unavoidable inductive effects of the measurement setup. 

 

 
Figure 6: First results of an antimonite core samples. 

Sample 1 and 2 are perpendicular to 3, 4, and 5. 

 

2.) Measurements using stuck electrodes  
 
In Figure 7 the preliminary results for an SIP measurement with 
stuck electrodes at a fist-sized antimonite sample is shown. The 

coupling resistance between current and potential electrodes 

was sufficiently small with < 3 kAs a preliminary estimate, 
the geometry factor was calculated assuming the four-point-

electrode line over a halfspace, which yields at least a rough 

estimation of the order of magnitude for the resistivity of the 

rock. In future, the calculation of the geometry factor will be 
repeated by simulated resistance measurements using the 

digitized 3-D model. However, the preliminary resistivity 

estimate of the investigated sample is in principal agreement 

with the core samples around 2000 m. In contrast to the core 
samples, we observe no phase effects, only a continuous 

increase from low to high frequencies that appears to be linear 

when plotted using a log-log scaling, which indicates inductive 

effects from the measurement system. 

 

 
Figure 7: First results of a fist-sized sample of antimonite 

with stuck electrodes (two repetitions). 

3.) Measurements in a sandbox 

 
Various measurements in the sandbox were carried out. To 

characterize the filling sand after saturation with water 

(700 µS/cm), it was measured first in the four-point measuring 
cell. After filling the sandbox, the water-saturated sand was 

measured again with two different arrays (Wenner-alpha and 

dipole-dipole). At least for small electrode distances (first 

level), the resistivity measurement in the sandbox corresponded 
to the reference measurement in the cell. For higher levels, the 

boundary of the sandbox caused an overestimation of the 

resistivity. On the other hand, the zero-phase in the sandbox 

was only found for the higher levels, while a peak with a 
maximum between 2 and 38 mrad at frequencies between 0.1 

and 1 Hz in the phase spectrum was found for the first levels. It 

is contemplated whether this artefact is associated with 

polarizing effects at the steel electrodes.  
After the reference measurements using the pure sand, a fist-

sized native antimonite sample was buried in the centre of the 

sandbox (just below electrodes 6, 7 and 8) at a depth between 3 
and 7 cm. In Figure 8 the results of these measurements using a 

Wenner-alpha array are shown. At the electrodes 5, 6, 7 and 8 

(red open triangle), resistivities of about 45 m and very small 

phase values were measured corresponding to the pure sand 
characteristics. One electrode position further (6, 7, 8, 9 orange 

triangle), a remarkable phase effect (up to 300 mrad) could be 

observed with a maximum at 100 Hz. This phase effect is 

increasing with increasing electrode distances (equivalent to 
depth) and is associated with the buried antimonite sample, 

while the resistivity value does hardly show a significant 

change. For the highest level (green open square) the resistivity 

is overestimated probably because of the limited dimension of 
the sandbox, which was already observed for the measurements 

in the pure sand before. The next step is an inversion of the data 

that considers the correct dimensions of the sandbox. 

 

 
Figure 8: First results from a buried antimonite in fully 

saturated quartz sandbox. 
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CONCLUSIONS 

 
 

Our preliminary results show that probably reliable SIP 
measurements can be carried out using any of the three 

approaches. Previous studies (e.g., Binley et al., 2005; 

Kruschwitz, 2008; Martin, 2010; Weller et al., 2011) 

demonstrate that measurements at cylindrical core samples in a 
four-point cell can be considered to be the state-of-the-art for 

solid rocks.  

However, also measurements at rock samples with irregular 

geometry seems to be a promising tool, even if there is still 
potential to further develop the proposed approaches.  

SIP measurements at sand-filled boxes can also be a suitable 

way. However, the reliability of the SIP characterization of 

buried rocks inside a box must be verified in further studies. 
Our next steps are the comparison of the three approaches 

considering possible anisotropy effects and the verification of 

the measurement for a broader range of samples with irregular 

geometry. The electrode material for the measurements in the 
sandbox should be modified to avoid unwanted polarization 

effects. Also, alternative materials for coupling the electrodes 

directly to the rock surface will be tested in the future. 
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I 

NTRODUCTION 
  
For a long time, the interpretation of spectral induced 
polarization has been based on empirical models (Cole and 
Cole 1941), wherein the physical meanings of the model 
parameters are difficult to interpret physically. Pioneers like 
Pelton et al. (1978) showed relationships between 
chargeability and mineral content in sulphide deposits, but did 
not provide mechanistic approaches. However several 
theorists, for instance Schwarz (1962), Wong (1979) and more 
recently Revil et al. (2015) have proposed mechanistic 
approaches that light the micro-meso-macro IP in various 
cases.  
 
One consensus does exist regarding the dependence of the 
time constant with the grain size and the diffusion coefficient 
(D in m2/s) of ions in the pore solution. However it seems not 
applicable in the case of semi-conductor particles: the 
diffusion coefficient as numerically derived from the time 
constant is some orders of magnitude larger than in the case of 
siliciclastic mediums (Gurin et al. 2015; Revil et al. 2015). In 
the presence of electronic semi-conductors, Gurin et al. (2015) 
and Hupfer et al. (2016) prefer to introduce the notion of 
specific surface area to model the time constant, and D is no 
more involved in the relationship providing the time constant.  
 

METHOD AND EXPERIMENTAL RESULTS 
 
The complex resistivity of unconsolidated siliciclastic medium 
containing electron-based semi-conductors minerals were 
acquired over a frequency range from 91.5 mHz to 20 kHz 
using SIP Fuchs III electrical impedance spectrometer. We use 
Fontainebleau sand (consisting of 98 % of pure silica). The 
particle size lies between (0.1- 0.2 mm). According to our 
tests, this medium shows a weak polarization, in agreement 
with all previous works made on such samples. The 
measurements tank is rectangular with dimensions (28 cm 
long, 10 cm wide and 10 cm of height). We use a Wenner 
array with 6.5 cm spacing. Non-polarizable Cu/CuSO4 
electrodes are used to measure the potential difference, 
whereas the current electrodes are made of stainless steel (Ag 
316L) electrodes. The metallic grains are randomly scattered 
throughout the medium. 
 
We firstly vary the metal content (mass fraction) and the grain 
size, and secondly the electrolyte type (sodium chloride NaCl, 
potassium chloride KCl and sodium sulphate Na2SO4 
separately). Finally the electrolyte concentration is also 
changed with 0.001, 0.01, 0.1 and 0.5 mol/l respectively.   
 
The chargeability M of the medium is calculated from the 
amplitude of the complex resistivity at higher and lower 
frequencies and the time constant τ is derived from the critical 
frequency (the frequency of the phase peak). 

SUMMARY 
 
Induced polarization (IP) is useful for mineral 
exploration. In the presence of sulphides (more generally 
speaking: semi-conductors), the charge carriers inside 
particles are electrons and electron gaps. The inner 
diffusivity and the charge concentration are very high 
with respect to the background solution ones. 
Mechanisms of induced polarization are still under 
questioning in those cases.  
In order to improve our knowledge about the mechanisms 
controlling IP in such mediums, we propose new lab 
experiments on unconsolidated mineralized medium and 
begin numerical modelling by using the Poisson-Nernst-
Planck (PNP) equation set as well. Four different types of 
semi-conductors (graphite, pyrite, chalcopyrite and 
galena) are involved in the experiments. The polarization 
effect of grain size, mineral concentration as well as 
electrolyte salinity and type are investigated at the lab 
scale. We find that the total chargeability of the medium 
is a function of the mineral volume but is independent of 
the electrolyte salinity and electrolyte type. However, the 
time constant (τ) is highly dependent on the grain size 
and the electrolyte salinity, and is slightly dependent on 
the mineral type. These results appear to be in agreement 
with the classical Wong’s theory, but we assume here that   
no significant redox phenomenon does happen at the 
grain surface.  
The observed dependence of the chargeability and the 
time constant on the salinity could be explained by 
considering the mineral grain as a dipole impacting the 
potential and consequently charge distribution in its 
vicinity. This dipole is generated inside the particle to 
compensate the primary electrical field and the whole 
particle is –as a first approximation- a spherical boundary 
(and volume) with a constant potential on (and in) it.  The 
distribution of the charged particles in the area around the 
dipole electric will respond accordingly to this boundary 
condition and is driven by the potential. Since the 
equations are coupled, the potential depends on return on 
the resulting ions distribution. Although the finite-
element numerical approach used here is still preliminary, 
it opens wide perspectives in the understanding of IP in 
more complex media.  
 
Key words: spectral induced polarization, electrolyte 
effect, mineralized medium. 
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Increasing the mass fraction of metal (galena or chalcopyrite) 
leads to an increase of M and a decrease of the amplitude of 
the complex resistivity, while M is independent of the 
electrolyte type and concentration. Τhe time constant depends 
on the grain size and electrolyte concentration. The phase peak 
moves to higher frequencies while the electrolyte 
concentration increases. Accordingly, the time constant 
decreases with concentration and from the figure 1 we notice 
that the shape of the phase spectrum is not influenced by 
electrolyte concentration. That means that the shape of phase 
spectra is only controlled (actually: shifted along the 
frequency axe) by the grain size distribution.  
 
The figure 2 exhibits the dependence of the relaxation time 
with the solution conductivity. If we remove the distilled 
water point (which in reality may be acidified by carbonic 
acid), the relationship seems extremely linear with a slope of -
 0.85 s.m/mS.  
 

 
 
Figure 1: experimental phase with graphite (1% volume) for 
several electrolyte (KCl) concentrations. 
 
 

 
 
Figure 2: experimental relaxation time versus solution 
conductivity. Excluding the distilled water point, the slope is 
very close to -0.85 s.m/mS. 
 
 
 FINITE ELEMENT METHOD MODELLING 

 
The Poisson-Nernst-Planck (PNP) equation set is a theory (or 
model) which includes the two major determinisms involved 
in electrolytic solutions. Precisely, it takes into account the 
dispersion caused by the Brownian motion (as set by Einstein 

for each ion type as: , where D is the diffusivity, 

 the mobility,  the Boltzmann constant, T the 

temperature, and q the electrical charge of the ion) coupled 
with the Poisson equation. In the presence of several kinds of 
ions numbered (i), the system is written: 
 

, 

 

where is the concentration of ions (i),  valence of ion (i), 

e the elementary charge, the potential, and N the number of 

involved ion species.  
 

The coupling of the concentrations with the potential  

leads the system to be nonlinear.  
 
We undertake computation by using the Finite Element 
Method as proposed by the free but powerful and convivial 
software named “freefem++” (see Hecht, 2012 and 
http://www.freefem.org/). Our modelling is preliminary 2-D. 
The figure 3 shows a typical mesh within a box of 2X2 mm2 
including a 40 µm diameter particle, supposed to be very 
conductive. It assumes that the phenomenon inside the particle 
is rapid and anticipates the major phenomenon occurring 
outside the particle (later on we shall take into account the 
diffusion of charges inside the particle).   
 

 
 
Figure 3: the mesh used to study the concentration and 
potential evolution in the vicinity of a conductive particle. 
 
Only two kinds of ions (one cation and one anion) of equal 
diffusivity are involved in this preliminary modelling. 

http://www.freefem.org/
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At the beginning of the experiment, the potential is null 
everywhere and the ion concentration is homogeneous. Then 
we set potentials on the two opposite faces as depicted on 
figure 3 and run the software using finite differences in the 
time domain. 
 
The diffusivities D1 and D2 are close to 2.10-9 m2/s (K+ and Cl- 

standard value). As expected, the resulting concentrations are 
just opposite through the experiment. 
 
On figure 4 we show the potential and cation concentration for 
two initial concentrations and after 1 s and 100 s. The 
potential evolution with time or concentration is so weakly 
perceptible, that we only show the potential one time. The 
concentration varies in the vicinity of the particle: the 
polarization phenomenon is mainly driven by the particle 
dipole at a distance of a few radiuses. The Gouy-Chapmann 
layer role is not taken into account here; actually we expect 
that its contribution is negligible when considering such 
conductive particles.   
 
 

CONCLUSIONS 
 
The chargeability of the medium is a linear function of the 
concentration of the metallic particle (in volume), and it has a 
small and negligible dependence on the mineral type and 
solution conductivity. The phase of the complex resistivity is a 
direct indicator of the mineral content. The chargeability of 
the medium is slightly depending on the grain size and on the 
water conductivity. The relaxation time is depending on the 
grain size and electrolyte concentration: we find a clear 
logarithmic correlation between relaxation time and 
electrolyte conductivity. The polarization is at least partially 
controlled by the solution ions.  
The correlation between relaxation time and the resistivity of 
the medium is still one of the obstacles to use SIP in minerals 
discriminations. We expect that a good use of the numerical 
modelling by using the Poisson-Nernst-Planck model will 
improve our common understanding of IP in the future.  
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Figure 4: potential and cation concentration: (a) potential; (b) cation concentration after 1 s with 0.001 mol/l; (c) after 1 s with 
0.1 mol/l and (d) after 100 s with 0.1 mol/l. The potential modification is hardly perceptible, while the ion concentration varies in 
the vicinity of the particle.  
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INTRODUCTION 

  
Spectral induced polarization measurements are used in many 
ways to characterize natural porous rocks and soil material. In 
the last couple of years, there have been some efforts to 
correlate IP spectra and IP related data towards petrophysical 
and structural, i.e. pore scale quantities, such as: 
 

- specific surface area (e.g. Börner et al., 1996; Slater 
et al., 2006; Weller et al., 2010); 

- permeability and hydraulic conductivity (e.g. Börner 
et al., 1996; Weller et al., 2015); 

- pore and pore throat sizes (e.g. Scott & Barker, 
2003; Revil et al., 2014); 

- general textural structures (Kruschwitz et al., 2010); 
- fractal dimension of pore space geometries (Zhang 

& Weller, 2016). 
 

Nevertheless, in many cases valuable core material is either 
destroyed during the measurements (e.g. by MICP 
experiments), or sister core plugs are used, which might not 
feature the same pore scale structures, or exact mineralogical 
composition. Hence, results of SIP and other measurements 
necessarily do not need to fit or correlate. This is where the 
imaging and image analysis techniques can contribute with an 
important part to pore scale research. 
 
In the following, the authors are giving a brief introduction of 
X-ray micro computed tomography (µ-CT), Digital Image 
Analysis (DIA) and Digital Rock Physics (DRP) at the pore 
scale. Afterwards, a selected variety of results from these 
different methods are showcased, in order to give an overview 
on the possibilities of non-destructive and three dimensional 
(3D) imaging procedures. 
 

METHODS 
 
In this chapter, we would like to introduce the main technical 
background of high resolution X-ray computed tomography, 
followed by the extensive DIA and DRP workflow.  

 
X-Ray Computed Tomography 
 
Figure 1 showcases the basic principle of the µ-CT 
measurements. X-rays are emitted from a high power 
nanofocus source (Figure 1, left hand side) in form of a so 
called cone beam. As soon as they hit the sample material, 
which rotates stepwise in pitches << 1° on a computerized 
numerical control unit (CNC, middle of Figure 1), X-rays are 
absorbed depending on the local density of the material, i.e. of 
the mineral phases. The detector (Figure 1, right hand side) 
receives this information, and for each rotation step a 2D 
image, the so called sinogram, is stored. Finally, the 2D 
images are transformed into a 3D volume data set by using 
state of the art back projection algorithms. A comprehensive 
overview of µ-CT imaging and 3D image reconstruction can 
be found in Buzug (2010). 
 

SUMMARY 
 
Spectral Induced Polarization (SIP) measurements are 
used in many different ways to characterize natural rocks 
and soils. Main foci of interest are the enhanced 
characterization of the causes of IP-effects in clastic 
rocks (especially sandstones), the interactions between 
the matrix-fluid-system and within the electrical double 
layers as well as the correlation with “classical” 
petrophysical parameters, such as specific surface area, 
permeability, mercury intrusion capillary pressure 
(MICP) and others. 
 
Nevertheless, for all of these investigations, knowledge of 
the inner structure of the sample material is essential in 
order to create reliable and validated models as well as to 
interpret and to assess the data most completely. 
Unfortunately, many of the methods used, to get access to 
the inner structure of rocks are destructive (e.g. MICP, 
thin sectioning, etc.) and the valuable sample is lost. In 
addition, data is either of volume integrated nature or 
only available for the 2D case and the usage of sister 
cores does not necessarily lead to reliable results. 
 
In this paper, the authors showcase the possibilities of 
non-destructive and three dimensional X-ray computed 
tomography and of enhanced image analysis capabilities 
for the quantification of rock structures at the pore scale.  
 
Key words: µ-CT imaging, rock structure, digital image 
analysis, pore geometry, grain geometry, SIP 



µ-CT Rock Structure Quantification for SIP Measurements M. Halisch et al..  

IP2016 – 6-8 June, Aarhus, Denmark    2 
 

 
 

Figure 1. Basic principle of µ-CT imaging (Halisch, 2013).  
 
Digital Image Analysis & Digital Rock Physics 
 
After the sample material has been scanned by µ-CT imaging, 
and the data set has been reconstructed into a 3D volume file, 
the data should be pre-processed before the image analysis 
workflow starts. Pre-processing includes X-ray artefact 
reduction, enhanced image filtering operations (de-noising, 
smoothing, edge enhancement) and cropping of the data set 
into regions of interest (ROI) for the further investigations.  
 
Followed by these procedures, the different phases (e.g. pore 
space filled with air or water, main grain matrix, accessory 
minerals, etc) within the sample are identified and then 
segmented (i.e. explicitly identified and labelled). In the 
simplest case, pore space and minerals are segmented into two 
“phases” only (Figure 2). 
 

 
Figure 2. Simple “two phase segmentation” of a small 
subsample from a Bentheimer sandstone data set, showing 
the detected porosity on the left and the mineral phases on 
the right, respectively.  
 
Depending on the specific research interest, the segmented 
structures can be assessed and characterized in detail by 
performing the DIA, allowing deriving the following 
(selected) parameters: 
 

- total and effective porosity, 
- axial porosity distribution, 
- matrix mineral volume, 
- pore size distribution, 
- grain size distribution, 
- surface area of the grains (or pore surface), 
- fractal dimension, 
- pore shape classes, 
- individual pore geometry (max., min. and medium 

extension), 
- pore and grain aspect ratios. 

 

In addition, the processed 3D data sets can be used to perform 
extensive numerical modeling by using the in-situ geometries 
of the investigated samples. By performing DRP at the pore 
scale on representative volumes, the previously introduced list 
of parameters can be extended by the following (again, a 
selection): 
 

- electrical conductivity of the rock-pore fluid-system,  
- formation resistivity factor, 
- capillary pressure at drainage and imbibition, 
- pore throat distribution, 
- permeability tensor and 
- diffusion coefficient. 

 
In the following section, we would like to showcase a 
selection of results, focussing upon structural pore scale 
analyses of a small variety of sandstones. 
   

RESULTS 
 
As explained in the previous section, different phases can be 
segmented for the 3D data sets. From this, the volume of the 
detected phase of interest can be derived (Figure 2). For the 
volume of the pore space, µ-CT is able to distinguish between 
total and effective porosity (as a function of resolution and 
investigated ROI), whereas most laboratory measurements are 
solely able to detect the effective, i.e. connected porosity. It is 
furthermore possible to separate the porous / grain matrix 
system, i.e. to disconnect the detected pores / grains from each 
other. By doing this, each pore / grain is labelled and gets an 
explicit identification number (Figure 3). From this, pore size 
and grain size distributions can be easily calculated. 
 

 
Figure 3. Disconnecting and labelling of the pore network 
(left) and grain matrix (right). P1, P2, P3 indicate the three 
biggest pores, M1, M2 and M3 the three biggest grains, 
which have been identified from the ROI of Figure 2. 
 
Figure 4 displays the results from a “conventional” grain size 
analysis, derived by thin section analysis, and from 3D DIA. 
The investigated sample is a so called Baumberger sandstone, 
which is characterized by a fair amount of carbonatic cement, 
which makes the 3D analysis very challenging due to the low 
density contrast of the mineral phases. Nevertheless, both 
results indicate a remarkable good accordance and overlap. 
The thin section analysis slightly tends to smaller grain sizes, 
since not all grains are cut straight through the center, and 
hence edge effects are likely. In addition, DIA is able to 
investigate by far more grains than the 2D analysis (almost 
factor of 50). Nevertheless, thin section analysis features the 
advantage of higher resolution, so that smaller grains can be 
detected. Effective detection threshold for the DIA in this 
example is about 20 µm. 
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Figure 4. Comparison of two different results from a grain 
size distribution analysis of a Baumberger sandstone 
sample. The greyish graph shows the results from 2D thin 
section analysis, the red graph shows the results from the 
3D DIA. 
 
In the same way, pore size distributions can be created and 
assessed. Additionally, by separating the pores und labelling 
them individually, it is possible to characterize the equivalent 
3D pore geometry, aspect ratios and pore shapes. The pore 
geometry is measured by using so called bounding box 
methods (Figure 5), which determine the x-, y- and z-length of 
a surrounding box for each pore individually. This can be 
done either by a fixed bounding box (Figure 5, left hand side), 
which does not consider the pore orientation, or by a so called 
Feret calliper box, which is oriented in direction of the largest 
elongation of the detected pore (Figure 5, right). 
 

 
Figure 5.  Different approaches to estimate the geometry of 
an individual pore. (a) Bounding box, (b) Feret diameter 
method. 
 
By using these geometries, different length ratios can be 
evaluated, depending on the smallest (S), medium (l) and 
longest (L) pore elongation (Figure 6). This leads to so called 
equancy and equivalent shape plots for further investigations. 
 

 
Figure 6.  Pore equancy (left) and shape (right) 
classification (Schmitt et al., 2015). Please note that the 
cubic / rod like shapes can be equivalently replaced with 
spheres or cylinders. 

These results can be used to assess the pore network by 
individual pore (shape and equancy) clusters. Investigations 
from Schmitt et al. (2015) have shown that the different shape 
clusters can be correlated with structural pore scale features. 
The very cubic / spheric shapes are often linked to large pore 
bodies, which form the main part of the pore network. Rod or 
cylindrical shaped pores are often formed by altered minerals, 
especially by feldspars. More plate like pores are often 
affiliated to clayey agglomerations (e.g. clay booklets).   
Additionally, more general geometrical ratios can be 
determined, such as the average pore body – pore throat ratio, 
which is of interest for (e.g.) membrane polarization models, 
such as recently published by Bücker and Hördt (2013a & 
2013b).  Figure 7 showcases such a small region of interest of 
the main pore network of a Fontainebleau sandstone sample. 
The determined average ratio, i.e. pore body diameter to pore 
“throat” diameter is in range of 200 µm: 10 µm (20 : 1). Table 
1 summarizes the results for different cretaceous sandstones. 
Nevertheless, it should be mentioned that these results are 
highly dependent of the investigated sample, due to the very 
high variability of structures at the pore scale. 
 

 
 
Figure 7. Visualization of a typical pore body – pore throat 
– pore body system of the main pore network of a 
Fontainebleau sandstone. 
 
Different approaches to characterize the pore size distribution 
are compared in Figure 8. Besides conventional laboratory 
techniques like NMR or MICP, pore radii might be estimated 
by SIP (Niu and Revil, 2016; Zhang & Weller, 2016) and also 
derived by performing DRP on the 3D geometry of CT 
images. The main limiting factors for this kind of numerical 
 
Table 1. Pore body to pore throat ratios of main pore 
networks for a small selection of cretaceous sandstones: S1 
= Fontainebleau, S2 = Bentheimer, S3 = Berea, S4 = 
Obernkirchen. 
 
 avg. ratio max. ratio min. ratio 

S1 20:1 25:1 10:1 
S2 16:1 21:1 8:1 
S3 15:1 22:1 9:1 
S4 11:1 15:1 8:1 

Red:  3D DIA. ~ 4900 investigated grains 
Grey: 2D thin section analysis. ~ 100 investigated    
          grains 
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Figure 8. Comparison of wetting phase saturation vs. pore 
radius from different methods for an Eocene sandstone 
sample. 
 
modeling are the representativeness of the 3D domain as well 
as the scanning resolution. More research is needed to 
combine the information on pore size distribution provided by 
different methods with varying resolution. The fractal 
dimension seems to be a useful parameter to describe the size 
of parameters as function of resolution (Zhang & Weller, 
2016). 
 

CONCLUSIONS 
 

As we have shown, µ-CT imaging combined with digital 
image analysis and digital rock physics forms a powerful set of 
methods for the quantification of internal rock structures at the 
pore scale. With these methods, access is granted to high 
resolution and 3D sample information at the pore scale. 
Limiting factors are obviously the 3D image resolution and the 
effective image analysis resolution. Hence, results need to be 
considered as quantities depending on the resolution. As a rule 
of thumb, effective image analysis resolution is about 3x – 5x 
coarser than the original scanning resolution. Nevertheless, 
knowing and respecting these limitations can create reliable 
data, which are in good agreement with conventional, i.e. 
structural, mineralogical and petrophysical laboratory 
investigations. 
 
With this, it is possible to generate valuable 3D spatial data 
sets, to quantify a large number of structural, geometrical and 
petrophysical parameters at the pore scale and to combine this 
data with the results from laboratory scale SIP measurements, 
which enables an enhanced rock characterization without 
destroying or changing valuable sample material. 
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INTRODUCTION 

  
Initially developed for the prospection of metallic ores, the 
induced polarization (IP) method has emerged in recent years 
as a suitable technique for hydrogeological studies. As an 
extension of the standard DC-resistivity method, IP 
measurements provide information about the electrical 
conductivity (i.e., energy loss) and polarization (i.e., energy 
storage) properties of the subsurface, permitting an improved 
lithological characterization. Furthermore, studies using multi-
frequency measurements (spectral-IP, SIP) have demonstrated 
the ability of the IP method to gain information about 
biogeochemical processes. For instances, an increase in the 
polarization effect has been correlated to the accumulation of 
bio-films in column experiments (e.g., Ntarlagiannis et al., 
2005). Also, a significant increase in the polarization response 
has been observed due to the precipitation of metallic minerals 

accompanying the stimulation of microbial activity (e.g., 
Williams et al., 2009; Flores Orozco et al., 2011). 
Furthermore, changes in the electrical signatures have been 
correlated to reversible chemical transformation of bio-
minerals (e.g., Slater et al., 2007; Flores Orozco et al., 2013). 
Such results have promoted the application of the IP method 
in numerous investigations in the emerging discipline of 
biogephysics (e.g., Atekwana and Slater, 2009). Built on these 
findings, a recent study has explored the applicability of the IP 
imaging method for the prospection of naturally reduced 
zones (NRZ) at the floodplain scale with promising results 
(Wainwright et al., 2016). NRZ are spatially limited areas 
characterized by high rates of microbial activity and thus a 
disproportionally large impact on larger-scale biogeochemical 
cycling. Furthermore, chemical changes in the groundwater 
composition accompanying microbial activity in NRZ might 
be associated with the precipitation of metallic minerals, such 
as iron sulphides (FeS), which have a measurable polarization 
effect. 
 
Site characterization at the floodplain scale based on the 
analysis of soil and groundwater samples is limited by the 
characteristics of the samples (e.g., location of the boreholes, 
depth and volumes of the sampling), and often lacks the 
spatial resolution needed to identify NRZ. IP images provide 
information about the electrical properties of the floodplain 
sediments at a high spatial resolution and might be a suitable 
alternative to define NRZ. However, as pointed out by 
Wainwright et al. (2016), the modest polarization response of 
metallic biominerals places high demands on the resolution of 
the TDIP imaging results. 
 
An adequate characterization of data error is critical to avoid 
the creation of artifacts or the loss of resolution in images. 
Furthermore, quantitative information on data error can be 
used i) to remove outliers associated with systematic error and 
ii) for the parameterization of error models describing the 
characteristics of inherent random error. Flores Orozco et al. 
(2012) recently adopted a power-law error model to 
characterize the data error in IP measurements (i.e. phase or 
chargeability) yielding an improved resolution of the images 
obtained from an inversion scheme, where the data are fitted 
to the confidence interval defined by the error model. 
 
Furthermore, the on-site evaluation of data quality is critical 
to eventually improve the survey design or increase the signal-
to-noise ratio (S/N). However, to date, the most widely 
accepted approach to evaluate IP data quality is based on the 
analysis of the misfit between normal and reciprocal 
measurements, where reciprocal measurements are those 
collected with interchanged current and potential electrodes. 
Though, the necessity to reduce the acquisition time for large-
scale surveys compromises the collection of reciprocals. 

SUMMARY 
 
Recent studies have demonstrated the advantages of a 
careful processing of induced polarization (IP) imaging 
datasets. In particular, inversion results based on an 
adequate quantification of data error provide IP images 
with enhanced contrasts and a better correlation with 
subsurface structures and processes. The analysis of the 
discrepancy between normal and reciprocal readings is a 
widely accepted measure to assess quality of imaging 
datasets and parametrize error models. However, the 
collection of reciprocal measurements increases 
acquisition time and is not always feasible.  Therefore, 
we propose an alternative methodology to quantify data 
error of time-domain IP (TDIP) imaging measurements 
based on the analysis of the recorded IP decay curve. Our 
approach provides detailed information about data error 
as required for the identification of outliers and the 
quantification of error parameters without the need of 
reciprocal measurements. Comparison of the error 
parameters and imaging results following our proposed 
decay-curve analysis (DCA) and the conventional 
normal-reciprocal analysis revealed consistent results, 
demonstrating the accuracy of our approach. We 
illustrate the practical applicability of our approach with 
the inversion results for an extensive field data set 
collected at the floodplain scale aiming at the localization 
of so-called “biogeochemical hot-spots”, which are areas 
characterized by high rates of microbial activity and the 
accumulation of iron sulphides. 
 
Key words: data processing, error quantification, time-
domain IP, hydrogeophysics, biogeophysics. 
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Furthermore, measuring configurations characterized by high 
S/N, such as the multiple-gradient array (Dahlin and Zhou, 
2006), are not suited for the collection of reciprocals with 
multi-channel instruments without drastically increasing the 
acquisition time. Accordingly, IP surveys at the large scale 
call for the development of new techniques to quickly and 
though reliably quantify data quality without the need of 
reciprocal readings. 
 
Here, we propose a new methodology to quantify data-error 
parameters based on the analysis of the voltage decay of time-
domain IP (TDIP) measurements. Inversion of TDIP 
measurements were performed using error parameters 
obtained after the analysis of  normal-reciprocal misfit (NRM) 
and with the proposed decay curve analysis (DCA) to evaluate 
the performance of the proposed algorithm. We demonstrate 
the applicability of the new approach with an extensive TDIP 
data set collected at the floodplain scale that includes dipole-
dipole and multiple-gradient data. The objective of the IP 
survey was the identification of possible NRZ.  
 

STUDY AREA AND SETTINGS 
 

 
Figure 1.  Layout of the TDIP profiles (red lines) collected 
at the Shiprock site.  
 
Measurements were collected at the Shiprock Site (New 
Mexico, USA) on the grounds of a former uranium-processing 
facility. The site has been remediated but remanent 
concentrations of uranium are still observed in water samples. 
The site’s stratigraphy is characterized by three main units: an 
impermeable clay-rich layer extending from the surface to ~2 
m depth, followed by a sandy-gravel aquifer (~3 m thickness) 
on top of the low permeable Macos Shale. Groundwater level 
was located at a depth ~3m during the field surveys. Studies 
on similar sites (Wainwright et al., 2016) revealed that 
fluvially deposited organic material within aquifer sediments 
naturally stimulates the activity of subsurface microorganisms 
leading to both the natural immobilization of uranium and the 
accumulation of reduced end products (minerals and pore 

fluids). In order to map these possible hot spots, which are 
expected to generate measureable IP anomalies, a total of 22 
IP profiles were collected. Six long profiles (up to 350 m) 
helped to fairly characterize large-scale changes in the 
electrical properties along the floodplain, and 16 shorter 
profiles were used to improve the resolution of particular 
areas of interest (Figure 1). TDIP measurements were 
collected using the Syscal Iris Pro 72 Switch equipment with a 
square-wave current injection, 50% duty cycle, and a pulse 
length of two seconds. The voltage decay was measured along 
20 windows between 240 and 1840 milliseconds (ms) after 
current shut-off. All measurements were collected using a 
separation of 2 m between electrodes and two configurations: 
1) Dipole-Dipole (DD) skip-2 and skip-3 (i.e., a length of 6 
and 8 m for both current and potential dipoles), and 2) 
multiple-gradient (MG) configurations (after Dahlin and 
Zhou, 2006) with 10 potential dipoles (ski-0, skip-1 and skip-
2) nested within the current dipole. DD measurements were 
collected as normal-reciprocal pairs. In order to reduce 
acquisition time, the depth of investigation was limited to 7 m, 
which allowed defining the bottom of the aquifer at the upper 
limit of the Mancos Shale. 
 
The data error in DD measurements was quantified using the 
bin analysis for the normal-reciprocal misfit and error-models 
described in Flores Orozco et al. (2012). All data was inverted 
with CRTomo an algorithm by Kemna (2000), which permits 
the inversion of the data only to the confidence level 
determined by the error model. For inversions with CRTomo, 
chargeability values were linearly converted to frequency-
domain phase values (at the fundamental frequency of 0.125 
Hz) assuming a constant-phase response (Kemna, 1997).  
 

DECAY-CURVE ANALYSIS 
 
Initial inversion of MG measurements using error parameters 
of co-located DD datasets resulted in images that were 
affected by artifacts (not shown here) due to the over 
estimation of data error. As expected, a more detailed analysis 
of the decay curves (see Figure 2) revealed smooth curves for 
measurements associated with high S/N (i.e., low geometrical 
factors) and increasingly distorted curves for measurements 
collected with larger separations between the potential and 
current electrodes (lower S/N, higher geometrical factors). 
Previous studies reported similar observations and proposed to 
manually remove measurements associated with an erratic (or 
increasing) behaviour of the decay curves (e.g., Gazoty et al., 
2013; Doetch et al., 2015).  
 

 
Figure 2.  Measured decay curves with DD configurations 
(red symbols) for small (left), medium (centre) and 
maximum (right) separation between current and 
potential dipoles (i.e., S/N). The negative power law model 
fitted to each curve is indicated with the blue line. 
 

N 



Decay Curve Analysis in TDIP imaging  A. Flores Orozco, J. Gallistl, M. Bücker, and K. H. Williams 

IP2016 – 6-8 June, Aarhus, Denmark   3 
 

The first step of our processing consists in fitting a negative 
power-law model (fitted decay curve, FDC) to each measured 
decay curve (MDC). Such model yields a good fit of most 
decays while involving a minimum number of parameters. All 
physically meaningful MDC should be positive and decrease 
with time. Hence, a first filter removes all measurements 
associated with non-decaying curves, while measurements 
associated with an erratic behaviour were not removed. At this 
point, the actual goodness of the fit is not used for filtering, as 
this would remove erratic decay curves, typically related to 
larger separations between electrodes, i.e., “deeper” 
information, which is critical to solve for accurate images at 
depth. To explore the robustness of the FDC, we performed a 
series of analysis. For instances, we compared power-law fits 
to smaller subsets of the decay curve (odd and even IP 
windows) or using other models than the proposed power-law 
fit. Nevertheless, all results were consistent to those using the 
negative power-law model. To further evaluate the accuracy 
of the FDC we compared the integral chargeability obtained 
from the MDC and the FDC, which we found to be very 
consistent (Figure 3).  
 

 
Figure 3.  Comparison of the integral chargeability values 
computed from measured (MDC) and fitted (FDC) decay 
curves.  
 
To this point each FDC has been fitted independently, which 
might still result in a high spatial variability of the fitted 
models. However, due to the nature of the tomographic 
measurements, chargeabilities are expected to vary in a 
relatively smooth manner. Therefore, the second step of our 
analysis assesses the spatial consistency of all FDC of a 
tomographic dataset to identify and remove outliers. To this 
end, we compute a master decay curve as the median value of 
all measurements, and then adjust its position along the y-axis 
(i.e., the magnitude of the voltage values) to each individual 
MDC. The resulting curve, i.e. the shifted master decay curve, 
defines an improved FDC for each measurement. Outliers are 
then defined as those measurements associated with a large 
discrepancy between the MDC and the master decay curve. 
 
The filtered DD pseudosections in Figure 4 show that both 
NRA- and DCA-based filters consistently remove most 
outliers. Yet, the DCA filter removes fewer measurements 
associated with relatively high integral chargeabilities and/or 
small separations between electrodes. This illustrates the main 
difference between the two approaches. While the DCA only 
evaluates the similarity of all MDC in a data set with the 
shape of the master decay curve, the NRA is sensible to 
variations of the offset of the decay curves, the magnitude of 
which is higher at small dipole spacings and large 
chargeabilities. 
 

 
Figure 4.  Pseudosection for DD measurements after the 
removal of outliers as defined by the proposed DCA (top) 
and standard NRA (bottom).  
 
In a third step, we compute the discrepancy between the MDC 
and the FDC (fitted in step one), based on the individual 
misfits for each IP window. This approach allows us to 
quantify the temporal instability (i.e. erratic behaviour) of the 
measured signal and use this information to quantify the data 
error (i.e. standard deviation of a measurement). If we used 
the misfit of the integral chargeabilities instead, the obtained 
error would not properly assess the quality of the decay curve. 
Furthermore, later IP windows are associated with lower 
voltage values (i.e., lower S/N), thus the analysis of the misfit 
for each independent window permits a detailed analysis for a 
larger dynamic in the signal strength. The misfit between FDC 
and MDC can be used in a similar way as the misfit between 
normal and reciprocal readings to describe the error of the 
integral chargeability of a dataset. Figure 5 shows the FDC-
MDC misfits and the normal-reciprocal misfit of the same DD 
data set, both in function of the respective transfer resistances. 
The patterns of the misfits of DCA and NRA are consistent 
and exhibit similar power-law distributions. 

 
Figure 5.  Chargeability error estimates based on DCA- 
and NRA-misfits plotted as a function of the transfer 
resistances. 
 
Subsequently, error parameters were obtained for datasets 
processed by NRA and DCA following the methodology 
described in Flores Orozco et al. (2012b). Figure 6 presents a 
comparison of the imaging results for the polarization effect 
expressed in terms of the phase shift of the complex electrical 
resistivity. Images of the magnitude of the complex electrical 
resistivity revealed no significant changes between the two 
approaches (not shown here). Both phase images consistently 
resolved the main geological units; the low phase values 
correspond to the unsaturated clay-rich top layer and the low 
permeable Mancos clay at the bottom, whereas the high phase 
values are associated with the sandy-gravel aquifer material. 
Nevertheless, it is obvious that the NRA was not accurate 
enough to detect outliers in the datasets solving for the less-
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polarizable anomaly located at ~90 m along profile. The 
enhanced resolution and the lack of artifacts clearly 
demonstrate the applicability of and the additional benefit 
provided by the proposed DCA. 
 

 
Figure 6.  IP imaging results in terms of the phase of the 
complex electrical resistivity for data processed after the 
proposed DCA and standard NRA. 
 
After performing the DCA and inversion of the entire dataset, 
it was possible to construct maps representing the electrical 
properties of the subsurface at different depths. Figure 7 
presents the inverted phase values for aquifer materials (at a 
depth of 4.5 m), which reveal clear anomalies characterized 
by high IP values (>10 mrad). Ongoing work consists on the 
collection of aquifer materials to confirm the presence of NRZ 
in areas associated to high IP response   
 

 
Figure 7. Map of the Shiprock Site presenting the 
distribution of phase values in aquifer materials (at a 
depth of 4.5 m). 
 

CONCLUSIONS 
 
We propose a new methodology for the processing of TDIP 
imaging data sets based on the analysis of the IP decay curve. 
Our approach reliably identifies outliers and provides an 
adequate quantification of the data error.  Error parameters 
obtained with the proposed DCA and standard NRA are 
consistent, which clearly demonstrates the applicability of our 
approach. Imaging results obtained with the DCA resulted in 
images with enhanced contrasts and less artefacts compared to 

those images obtained with the NRA. Based on our results, the 
new approach is able to improve the quality of IP images. 
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INTRODUCTION 

Recently, the interpretation and inversion of TDIP data has 

changed from only inverting for the integral changeability to 

consider also the spectral information contained in the IP 

response curves (Fiandaca et al., 2012, 2013). Several 

examples of spectral TDIP applications have been presented, 

for landfill delineation (Gazoty et al., 2012b, 2013; Wemegah 

et al., 2016), lithotype characterization (Chongo et al., 2015; 

Gazoty et al., 2012a; Johansson et al., 2015, 2016; Maurya et 

al., 2016), time-lapse monitoring of CO2 injection (Doetsch et 

al., 2015a) and freezing of active layer in permafrost (Doetsch 

et al., 2015b). Furthermore, efforts have been made to achieve 

a wider time-range in TDIP acquisition, up to four decades in 

time (Olsson et al., 2016), for enhanced spectral content. In 

this work a review of the recent advances in spectral inversion 

of TDIP data is presented, in terms of: supported IP 

parameterizations; modelling of transmitter waveform; support 

for buried electrodes; model regularization; computation of the 

depth of investigation. 

ADVANCES IN SPECTRAL TDIP INVERSION 

In the spectral inversion of TDIP data, the data space is 

composed by the apparent resistivity and the full voltage 

decays, while the model space is constituted by a 

parameterization of IP. The Cole-Cole model (Cole-Cole, 

1941; Pelton et al., 1978) and the Constant Phase Angle 

(CPA) model (Van Voorhis et al., 1973) are the two 

parameterizations currently implemented in AarhusInv (Auken 

et al., 2015), the software in which the inversion algorithms 

described in Fiandaca et al. (2012,2013) are implemented. The 

complex resistivity ζCole-Cole of the Cole-Cole model takes the 

form: 

𝜁𝐶𝑜𝑙𝑒−𝐶𝑜𝑙𝑒 = 𝜌 (1 − 𝑚0 (1 −
1

1 + (𝑖𝜔𝜏)𝐶
)) 

(1) 

where ρ is the direct current resistivity, m0 is the intrinsic 

chargeability, τ is the time constant, C is the frequency 

exponent and i is the imaginary unit. The complex resistivity 

𝜁𝐶𝑃𝐴 of CPA model is expressed as: 

𝜁𝐶𝑃𝐴 = 𝐾(𝑖𝜔)−𝑏 (2) 

where b is a positive fraction, 𝜑 = −
𝜋

2
𝑏 represents the phase 

shift and defines completely the IP response, K is a constant 

and i is the imaginary unit. In the CPA model, the DC 

resistivity cannot be defined, because the complex resistivity 

increases indefinitely at low frequencies. For this reason, Van 

Voorhis et al. (1973) introduced the Drake model: 

𝜁𝐷𝑟𝑎𝑘𝑒 = 𝐾(𝑖𝜔 + 𝜔𝐿)−𝑏 (3) 

where in comparison with the CPA model a low frequency 

pole 𝜔𝐿 is introduced and the DC resistivity can be defined as 

𝜌 = 𝐾𝜔𝐿
−𝑏. In the AarhusInv implementation of the time-

domain CPA forward response the Drake model of equation 

(3) is actually used, with a fixed value for the low frequency 

pole 𝜔𝐿 = 10−5 Hz. In this way, the CPA inversion is set up 

in terms of the model parameters 𝜌 and 𝜑, while the Cole-

Cole inversion is set up in terms of ρ, m0, τ and C. Considering 

that the CPA and the Cole-Cole models are easily 

distinguishable in time-domain when more than 2 orders of 

magnitudes are acquired in the time-range (Lajaunie et al., 

2016), the choice between the different supported IP 

parameterizations can be driven by the actual spectral content 

of the data. For both models it is also possible to invert 

directly for the normalized chargeability parameters 𝜑/𝜌 or 

𝑚0/𝜌, instead of 𝜑 or 𝑚0. 

The forward modelling in AarhusInv, whatever 

parameterization is used for IP, takes into account the 

transmitter waveform and the receiver transfer function 

(Figure 1), for an accurate modelling of the IP response 

(Fiandaca et al., 2012,2013). The inversion is performed 

iteratively, by using the first term of the Taylor expansion of 

the nonlinear forward mapping of the model to the data space, 

as described in details in Auken et al. (2015). Figure 2 shows 

two typical forward responses for Cole-Cole and CPA 

homogeneous half spaces. The shape of the decays contains 

the spectral information of the IP phenomenon, which can be 

properly retrieved when the transmitter/receiver characteristics 

are properly modelled (Fiandaca et al., 2012; Fiandaca et al., 

2013; Lajaunie et al., 2016; Madsen et al., 2016). Recently, 

the modelling of the IP response during the current on-time 

with a 100% duty cycle transmitter waveform has been 

implemented in AarhusInv (Figure 3). With the 100% duty 

cycle the current switches directly from positive to negative 

values, allowing for shorter acquisition times (because the off-

time is skipped) and better signal-to-noise ratio (because the 

measured voltages are higher for the 100% duty cycle), but 

keeping equivalent spectral content when compared to the 

SUMMARY 
The extraction of spectral information in the inversion 

process of time-domain (TD) induced polarization (IP) 

data is changing the use of the TDIP method. Data 

interpretation is evolving from a qualitative description of 

the subsurface, able only to discriminate the presence of 

contrasts in chargeability parameters, towards a 

quantitative analysis of the investigated media, which 

allows for detailed soil- and rock-type characterization. In 

this work a review of the recent advances in spectral 

inversion of TDIP data is presented, in terms of: 

supported IP parameterizations; modelling of transmitter 

waveform; support for buried electrodes; model 

regularization; computation of the depth of investigation. 

Keywords: spectral inversion, time-domain, Cole-Cole, 

CPA, transmitter waveform 
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50% duty cycle waveform (Olsson et al., 2015; Madsen et al., 

2016). 

 

Figure 1 (after Fiandaca et al, 2013). (a) Construction of 

the actual response by superimposing step responses; (b) 

IP percentage difference between decays with different 

number of stacks (a decay stacked six times is used as a 

reference) for the homogeneous half-space described by 

the Cole–Cole parameters (m0 = 100 mV/V, τ =2 s, C=0.5). 

(c) IRIS Syscal Pro filter effect (circles) measured in the 

time domain on a non-chargeable resistor. (d) Example of 

forward response with the filter implementation (black 

line) and without the filter implementation (grey line). 

 

Figure 2. Examples of Cole-Cole decay (red curve) and 

CPA decay (blue curve) for homogeneous half spaces and 

50% duty cycle waveform (Ton= Toff =10 s, 4 stacked 

pulses). 

In addition to the 1-D and 2-D implementations described in 

Fiandaca et al. (2012,2013), the IP forward modelling in 

AarhusInv has been recently enriched by the possibility of 

computing the response for buried electrodes, for inversion of 

1-D borehole and 2-D cross-borehole data. The 1-D 

implementation computes the kernel following Sato (2000), 

with recursion formulas over the layers. Considering that in 

borehole data often hundreds of layers are modelled (Auken et 

al., 2016), the lateral-constrained approach has been 

implemented for speeding-up computations. The full 1-D 

model containing hundreds of layers is split into several sub-

models containing only a few tens of layers and the data are 

subdivided in subsets grouped by pseudodepth. 

 

Figure 3. 50% duty cycle decays (circles) and 100% duty 

cycle decays (triangles) for Cole-Cole homogeneous 

halfspace (ρ=100 Ωm, m0=40 mV/V, τ=0.01 s, C=0.3, 

Ton/Toff =10 s, 4 stacked pulses). Black lines represent the 

normalized decays in mV/V, while red lines represent the 

actual voltages (see Olsson et al. (2015) for details). 

 

Figure 4. Split of a 32-layers 1D model (grey model) in six 

13-layers laterally-constrained sub-models for 

computational efficiency. The red arrows represent the 

lateral constraints. 
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The inversion is then carried out in parallel on the split sub-

models/datasets and the full model is reconstructed stitching 

together the sub-models after inversion (Figure 4). This 

approach allows for gaining more than two order of 

magnitudes in run-time. The 2-D cross-hole computation has 

been implemented simply allowing the electrodes to be 

positioned at any node (on the surface or buried) of the finite-

element mesh (Bording et al., 2016). 

Compared to the implementations presented in Fiandaca et al. 

(2012,2013), new regularization schemes have been 

implemented for the spectral inversion of TDIP data, for 

vertical/horizontal constraints that favour sharp models 

(Vignoli et al., 2015) and for time-lapse constraints that 

promote compact time-lapse changes (Fiandaca et al., 2015a). 

In particular, two generalizations of the minimum support 

norm, namely 𝜑𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 and 𝜑𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, have been 

developed for time-lapse inversion: 

𝜑𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑥) = 𝛼−1
(𝑥2 𝜎2⁄ )𝑝

(𝑥2 𝜎2⁄ )𝑝 + 1
 

(4) 

𝜑𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 = 𝛼−1 [(1 − 𝛽) ∙
(𝑥2 𝜎2⁄ )𝑝1

(𝑥2 𝜎2⁄ )𝑝1 + 1

+ 𝛽 ∙
(𝑥2 𝜎2⁄ )𝑝2

(𝑥2 𝜎2⁄ )𝑝2 + 1
] 

(5a) 

𝛽 =
(𝑥2 𝜎2⁄ )𝑚𝑎𝑥(𝑝1,𝑝2)

(𝑥2 𝜎2⁄ )𝑚𝑎𝑥(𝑝1,𝑝2) + 1
 

(5b) 

where: 𝑥 = 𝑚 − 𝑚0 represents the difference between the 

reference value and the updated value in the time-lapse 

inversion for a given model parameter, i.e. the time-lapse 

change; 𝜎 represents the transition point of the minimum 

functional 𝜑 and controls the sharpness of time-lapse changes; 

𝛼 controls the relative weight of data and model measures in 

the objective function and affects the size of time-lapse 

changes; 𝑝 (or 𝑝1 and 𝑝2) controls the transition sharpness of 

𝜑 (Figure 5) and determines the way in which the overall 

focusing depends on 𝜎 and 𝛼 (Fiandaca et al., 2015a). 

 

Figure 5. Comparison of L2 norm, symmetric minimum 

support (equation 4) and asymmetric minimum support 

(equation 5) with varying norm settings. 

With the classic L2 norm 𝜑𝐿2
(𝑥) = 𝑥2 𝜎2⁄ , the penalty in the 

objective function for a time-lapse change 𝑥 = 𝑚 − 𝑚0 

increases with the square of 𝑥. With the norms of equation 4 

and equation 5 the penalty does not increase indefinitely with 

𝑥, but reaches a maximum when 𝑥 ≫ 𝜎 (Figure 5). This 

favours compact time-lapse changes, and the compactness can 

be easily and predictably controlled through the 𝜎, 𝛼 and 𝑝 

settings. In many time-lapse experiments diffusive processes 

are monitored, and compact time-lapse changes do not 

necessarily represent the underlying physics/geochemistry. 

However, robust and easy-to-tune regularizations that favour 

the smallest model variation compatible with the data can be a 

very helpful tool for data interpretation, when used together 

with model measures that promote smooth variations. 

Finally, a new robust concept for the calculation of the depth 

of investigation (DOI) for inversion problems described by 

several intrinsic parameters, like the spectral inversion of 

time-domain induced polarization data, has been developed 

(Fiandaca et al., 2015b). A calculation of the DOI is crucial 

for interpreting the geophysical models, as the validity of the 

model varies considerably with data noise and parameter 

distribution. Without the DOI estimate, it is difficult to judge 

when the information in the model is data-driven or is strongly 

dependent on the constraints and/or on the starting value. The 

proposed method is based on an approximated covariance 

analysis applied to the model output from the inversion while 

considering the data standard deviations. Furthermore, the 

cross-correlations between intrinsic parameters are taken into 

account in the computations, which is crucial when strong 

cross-correlations are expected. Our new DOI implementation 

starts by subdividing the 2-D section in [𝑁𝐿𝑎𝑦𝑒𝑟𝑠 × 𝑁𝑐𝑜𝑙𝑢𝑚𝑛𝑠] 

cells, and summing the Jacobian elements of the 𝑁𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

model columns downwards. For each layer 𝑛 and each model 

column 𝑙 a cumulated [𝑁𝐷𝑎𝑡𝑎 × 𝑁𝑃𝑎𝑟] quasi-Jacobian matrix 

is defined (cumulated downward from the 𝑛𝑡ℎ layer to the last 

layer): 

𝐺𝐶𝑢𝑚
𝑛,𝑙 (𝑖, 𝑘) ∶= ∑ 𝐺(𝑖, 𝑗)

𝑗𝑘,𝑙

𝑗=𝑗𝑘,𝑙−𝑛+1

 

∀𝑖 ∈ [1, 𝑁𝐷𝑎𝑡𝑎], ∀𝑘 ∈ [1, 𝑁𝑃𝑎𝑟],  

∀𝑛 ∈ [1, 𝑁𝐿𝑎𝑦𝑒𝑟𝑠], ∀𝑙 ∈ [1, 𝑁𝐶𝑜𝑙𝑢𝑚𝑛𝑠] 

(6) 

where 𝑗𝑘,𝑙 represents the model index of the 𝑘𝑡ℎ parameter of 

the last layer of the 𝑙𝑡ℎ model column, 𝑁𝐷𝑎𝑡𝑎 is the number of 

data, 𝑁𝑃𝑎𝑟 is the number of intrinsic parameters (e.g. 4 for the 

Cole-Cole model), 𝑁𝐿𝑎𝑦𝑒𝑟𝑠 is the number of layers in the 2-D 

model and 𝑁𝐶𝑜𝑙𝑢𝑚𝑛𝑠 is the number of model columns in the 2-

D model. It is then possible to define a [𝑁𝑃𝑎𝑟 × 𝑁𝑃𝑎𝑟] 
cumulated approximate analysis for each model column 𝑙 and 

each layer 𝑛 of the 2D section: 

𝑪𝑨𝑨𝑛,𝑙 ∶= [(𝑮𝐶𝑢𝑚
𝑛,𝑙 )

𝑇
𝑪𝑑

−1(𝑮𝐶𝑢𝑚
𝑛,𝑙 )]

−1

 
(7) 

The cumulated approximate analysis 𝑪𝑨𝑨𝑛,𝑙 corresponding to 

the 𝑛𝑡ℎ layer does not contain information on the parameters 

of the 𝑛𝑡ℎ layer alone, but it cumulates the sensitivity from the 

𝑛𝑡ℎ layer down to the last layer. This means that the 

cumulated approximate analysis gives information on all the 

layers below the 𝑛𝑡ℎ layer at once, for each model column 𝑙. 
In equation 7 the correlation between model parameters 
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belonging to different model columns are neglected (lateral 

data correlation), but the correlation among the 𝑁𝑃𝑎𝑟 intrinsic 

parameters for each model column is considered. The 

inversion is carried out in logarithmic model space, and thus 

we use a standard deviation factor, 𝑆𝑇𝐷𝐹, for each parameter 

𝑘: 

𝑆𝑇𝐷𝐹𝑛,𝑙(𝑘) ∶= 𝑒𝑥𝑝 (√𝐶𝐴𝐴𝑛,𝑙(𝑘, 𝑘)) 
(8) 

The DOI-value is then defined for each parameter 𝑘 and each 

model column 𝑙 by imposing a threshold value for the 𝑆𝑇𝐷𝐹, 

bearing the implicit meaning that below this threshold the 

model structures are not data driven, but rather a result of the 

constraints and/or inversion properties. Figure 6 shows the 

𝑆𝑇𝐷𝐹 values and the corresponding DOI computations for a 

typical 3-layers Cole-Cole model for a Schlumberger sounding 

(red lines). Furthermore, the results when disregarding the off-

diagonal elements in (𝑮𝐶𝑢𝑚
𝑛,𝑙 )

𝑇
𝑪𝑑

−1(𝑮𝐶𝑢𝑚
𝑛,𝑙 ), i.e. the 

parameter correlations, are presented (blue lines): the DOI is 

significantly overestimated when neglecting the parameter 

correlations. 

 

Figure 6. Depth of investigation (DOI) for an exemplary 3-layers Cole-Cole model for a Schlumberger sounding. Black 

dashed lines: layer interfaces. Continuous grey lines: vertical model subdivision for the 𝑺𝑻𝑫𝑭 computation (equation 8) as a 

function of depth. Green dashed lines: threshold value for the 𝑺𝑻𝑫𝑭 computation. Red lines: 𝑺𝑻𝑫𝑭 values as a function of 

depth taking into account the parameter correlations (continuous lines) and corresponding DOI values (dashed lines). Blue 

lines: 𝑺𝑻𝑫𝑭 values as a function of depth disregarding the parameter correlations (continuous lines) and corresponding 

overestimated DOI values (dashed lines). 

CONCLUSIONS 

The spectral inversion of TDIP data has reached maturity. 

Different IP parameterizations can be modelled, i.e. the Cole-

Cole and the CPA models, and the choice between the models 

can be made in function of the actual spectral content of the 

data. The forward modelling takes into account the transmitter 

waveform and the receiver transfer function for accurate 

computations, and the 100% duty cycle is supported for 

shorted acquisition time and better signal-to-noise ratio. 

Computation with buried electrodes for 1-D and 2-D 

modelling has been implemented, and advanced model 

regularizations have been developed, for sharp 

vertical/horizontal model variations and compact changes in 

time-lapse inversion. Furthermore, a new robust concept for 

the calculation of the depth of investigation has been 

developed, enabling judging when the information in the 

model is data-driven or is strongly dependent on the 

constraints and/or on the starting value. We believe that the 

advances in spectral TDIP inversion significantly increase the 

potential of TDIP in (hydro)geophysical applications. 
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INTRODUCTION 
  

The IP effect in TDEM data can be observed in coincident-

loop TDEM systems and is manifested as abnormally quick 

decay, which sometimes causes the measured voltage values in 

the receiver coil to demonstrate negative values. This 

phenomenon can significantly alter the shape of the transients 

and therefore may mislead the interpretation to recover false 

structures, with incorrect conductivity-thickness parameters. 

IP effect has been widely recognized in the ground-based 

Time Domain EM surveys, including work done by 

Kamenetsky et al. (2014). Nonetheless, for a long time it has 

been a standard practice within the geophysical community to 

neglect this effect in airborne data and eliminate any negative 

values, when inverting the TDEM data.  

 

There has been a recent and increasing interest in the IP effect 

in airborne data, as it carries potential for recovery of the 

Cole-Cole parameters (Cole and Cole, 1942), including 

chargeability information, which can be extracted from the 

airborne EM data, along with other Cole-Cole parameters.  

These recent attempts include work demonstrated in Kaminski 

et al. (2015), Viezzoli et al. (2013) and Viezzoli et al. (2015).  

 

The goal of the synthetic study, from which a short extract is 

presented here, is to address, under controlled conditions, the 

relevance of IP effect on heliborne TDEM data in different 

realistic scenarios, its impact on the data and the possibility of 

recovering the IP model parameters by means of 

multiparametric inversion. The results presented herein are 

currently under review in “Geophysics” 

 

The real case study deals with a classic geophysical target, i.e., 

kimberlite exploration. Even though it has long been known 

that, under certain conditions, the clay rich, altered kimberlite 

top faces can produce a measure chargeable signal, the 

examples of exploration exploiting IP effects in TDEM data 

are limited (e.g., Kamenetsky et al., 2014). In this paper we 

present results of IP modelling of VTEM data from 

Amakinskaya Kimberlite pipe, in Yakutia, eastern Russia. 

These results are under review in “Exploration Geophysics”. 

 

 

METHOD AND RESULTS 

 
The synthetic models are used to simulate a series of VTEM 

full waveform (long pulse) data sets, which in turn are 

contaminated with noise and further inverted in order to study 

recoverability of various targets in different environments. In 

addition, some noise-contaminated data were artificially 

processed; replicating the advanced processing techniques 

required for optimal results of field data AIP modelling.  

 

In current study we present the results of the study of two 

synthetic models 

 

Kimberlite model: in this model, a synthetic kimberlite pipe 

was placed underneath 30 m overburden. The upper facies of 

the kimberlite (crater) was made chargeable and conductive, 

while the lower facies of kimberlite (diatreme) was made less 

conductive and non-chargeable. Recovery of depth to the 

bottom of chargeable target was studied. 

 

“Simple deep” chargeable model: in this model a series of 

conductive and chargeable targets were placed at increasing 

depths to the maximum depth of 150 m. Possibility to recover 

deep chargeable targets is studied in resistive and conductive 

host rock environments. 

 

The extraction of Cole-Cole parameters on both the synthetic 

and the field data is handled by means of Laterally 

Constrained Inversion (LCI) or Spatially Constrained 

Inversion (SCI).  Both inversions (LCI and SCI) use similar 

forward mapping kernel, based on 1D considerations, in 

which the complex resistivity (dispersive model) is given by 

SUMMARY 
 

There have been multiple evidences in the literature in 

the past several years of what has been referred to as IP 

effect in the Time Domain Airborne EM data (TDEM).  

This phenomenon is known to be responsible for 

incorrect inversion modelling of electrical resistivity, 

lower interpreted depth of investigation and lost 

information about chargeability of the subsurface as well 

as about other valuable parameters. Historically there 

have been many suggestions to account for the IP effect 

using the Cole-Cole model. In current paper we are 

showing the possibility to extract IP information from 

airborne TDEM data including inverse modelling of 

chargeability from airborne TDEM, both synthetic and 

actual VTEM data with a field example from Russia 

(Amakinskaya kimberlite pipe). The synthetic examples 

illustrate how it is possible to recover deep chargeable 

targets (depths to over 130 m) in association with both 

high electrical conductivity and in resistive environments. 

Furthermore, modelling of IP effects allows corrected 

resistivity models. The Amakinskaya kimberlite pipe 

results highlight the relevance of chargeability for 

kimberlite exploration.  

 

Key words: Airborne EM, IP, Cole-Cole, Kimberlite. 
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the model of Cole and Cole. The inversion algorithm, 

modified as per Fiandaca et al. (2012) is providing combined 

estimation of all four parameters from equation (1) in two 

modes described above (LCI and SCI). The inversions are 

subject for regularization and user-defined constraints.  

 

Kimberlite model results: The true model is shown in Figure 

1a and Figure 1b. As it can be seen from the figure the 

kimberlite model consists of 4 general rock types: Overburden 

(OB), Crater facies of kimberlite (S), Diatreme facies of 

kimberlite (M) and the host rock (HR).  

 

 
 

Figure 1. Synthetic kimberlite true 2D model. (a)  

Electrical resistivity model (top 150 m). (b) Chargeability 

model (top 150 m).  

 

The next step was to invert the synthetic data in 

multiparametric mode with simultaneous recovery of four 

Cole-Cole parameters. The latter required testing different 

starting models. In general, the inverse problem is 

underdetermined and considering four varying parameters, the 

problem can become unstable and sensitive to starting models. 

Our objective was to test a wide selection of starting models, 

as well as different types of constraints (vertical and 

horizontal) imposed upon the  and C parameters to test which 

role locking  and C plays in ability to recover the true model. 

Starting resistivity values were tested from 10 to 1000 Ohm m; 

starting chargeability values were tested ranging from 10 to 

100 mV/V; the starting time constant () values were tested 

from 10-4 to 10-2 s, which are consistent with range of this 

parameter in known airborne TDEM systems.  Kamenetsky et 

al. (2014) showed that the frequency parameter C recovered 

from inversion of real TDEM data may reach 1. Based on this, 

the starting frequency parameter C was tested ranging from 

0.3 to 0.7 values. These starting parameters yield 81 unique 

combinations. All of these combinations were used to generate 

starting model files. Two sets of constraints were used on  

and C, first all 81 combinations were inverted using “soft” 

constraints (allowing  and C to vary rather freely spatially in 

the model space), then the same starting parameter 

combinations were inverted using “hard” constraints (locking 

the spatial variance in  and C to 1%). Therefore, a total of 

162 realizations were carried out. The inversion results were 

then assessed by misfit values. Global misfit values, 

normalized by standard deviations produced misfits ranging 

from 0.82 to 313.20 (depending on the starting parameters and 

type of constraints). Figure 2 shows on of the inversion results 

that produce good data fit. No a-priori and “soft” constraints 

on  and C were used. The model recovered is generally in fair 

agreement with the true model.  However, in this case, the C 

parameter for the overburden is not recovered. In order to 

recover the shallow C value, very loose vertical constraints 

were needed (not shown). We also assessed the relevance and 

effects of duly pre-processing the data and of a-priori 

information (e.g., from boreholes).  

 
Figure 2. Inversion of synthetic kimberlite VTEM data 

with starting Cole-Cole parameters:  = 1000; m0 = 50,  = 

10-3; C = 0.3 and “soft” constraints on  and C. 

 

Simple deep model results: a synthetic model is introduced 

with a series of conductive and chargeable targets, placed at 

increasing depth along the profile (Figure 3).  

 

 
Figure 3. Left: synthetic “simple deep” true model ( and C 

parameters fixed to 10-3 and 0.5 respectively); top 150 

meters are shown. Right: simulated noise-free transients. 

 

The inversion results (Figure 4) show that, in presence of 

favourable conditions (i.e., combinations of physical 

properties of the different strata) it is possible to recover 

information about chargeable targets in excess of 100 m depth 

straight from airborne data using the inversion in IP mode for 

the data simulated for the VTEM waveform. Other tests, 

which go beyond the scope of this abstract prove that, on the 

other hand, in some cases deep conductors can be masked by 

shallow chargeable layers.  



 

 

 

 
Figure 4. Inversion of synthetic VTEM data for “simple 

deep” model in IP mode with the following starting model 

parameters:  = 1000; m0 = 10,  = 10-3; C = 0.5 and 

“hard” constraints on  and C. 

 

Amakinskaya Kimberlite pipe results: From the geological 

standpoint, the area surrounding Amakinskaya kimberlite pipe 

belongs to a sedimentary basin with widespread outcrops of 

clays and alevrolites of Jurassic age (J1or), which 

unconformably overlay Cambrean limestone complex (Є3hl).  

Triassic basalts (T1kt) are also widespread in the area, 

especially to the north from the pipe. Amakinskaya 

Kimberlite pipe shows a great deal of anisotropy in the 

vertical direction, shifting from weathered, clayish upper 

facies, affected by permafrost to consolidated hard kimberlite 

below 30 m depth. This obviously has reflection in the 

physical properties of the kimberlite. Resistivity and 

chargeability changes with depth, showing lowering resistivity 

and increasing chargeability values in the upper facies of the 

kimberlite, while magnetic susceptibility increases with depth, 

as kimberlite consolidates (Bondarenko and Zinchuk, 2004). 

The airborne survey was flown in late 2014 using a VTEM 

system and the data were seriously affected by the IP effect 

(Figure 5b).  It should be noted however, that IP effect over 

the kimberlite, although evident in the transients, does not 

result in negative voltage measurements and therefore may not 

be instantly obvious in the data space at a first glance. 

 
Figure 5. Location of Amakinskaya kimberlite pipe (north-

eastern Russia); (a): VTEM flight lines shown over 

Landsat image. (b): IP effect measured over the kimberlite, 

shown in VTEM individual transients.  

 

In addition to strong IP effect, which made conventional 

inversion challenging, there was a strong electrified industrial 

infrastructure situated just 200 meters east of the Amakinskaya 

pipe, which seriously affected both EM and magnetic data. 

This cultural noise had to be removed from all data sets in 

order to proceed further with inverting the data. In general, 

the IP effect may be indicative of the clay alteration, which, in 

turn, may be present in upper (weathered) facies of a 

kimberlite. Interpretation of IP effect over kimberlites for 

ground TDEM surveys has been previously described in the 

literature (Kamenetsky et al., 2014) and becomes increasingly 

attractive in case with airborne TDEM data sets, as it allows 

extraction of chargeability, along with other parameters, such 

as time constant () and frequency parameter (C). 

 

As a result of SCI inversion approach with IP modelling, all 

four Cole-Cole parameters were extracted.  The target misfits 

of the inversions were achieved, producing distributions of 

Cole-Cole parameters, which were further interpolated to 

populate 3D volumes.  The distributions of electrical 

resistivity and chargeability with depth are shown in Figure 6. 

Overall, the results of the inversions allow to clearly 

differentiate between the kimberlite and the host rock.  The 

results are shown in Figure 7 as a compilation of all inversion 

results (including Mag), interpolated along VTEM flight line 

9310 and shown as a depth section of electrical resistivity, 

chargeability and magnetic susceptibility. 

 

 

 
Figure 6. 3D distribution of electrical resistivity and 

chargeability recovered by SCI inversion with IP 

modelling over Amakinskaya kimberlite pipe, shown as 

series of depth slices.  
 

The physical properties recovered through inversion of the 

VTEM data were compared to those derived from laboratory 

measurements on kimberlite samples (Figure 8). There is good 

agreement on the resistivity of the different facies, from the 

weathered kimberlite top to the deeper kimberlite breccia and 

carboniferous kimberlite. The clean limestones in the 

laboratory data display higher resistivities than those 

recovered by VTEM, due to the effect of saline water known 

to be present in the limestones, forming a confined aquifer in 

the area.  



 

 

 

 

 
Figure 7. Compilation of inversion results over VTEM 

flight line 9310.  

 

Susceptibility is also in good agreement, even though is 

displays less vertical variability. No direct measurements on 

chargeability are available on the Amakinskaya pipe. 

However, Kamenetsky et al. (2014) report recovered Cole 

Cole models from ground TDEM soundings affected from IP 

from the nearby Baitakhskaya pipe. They report values 

(m0=210 mV/V, =800 s, c=1) close to those we obtained 

from the VTEM data.   

 

 
 

 Figure 8. 1D model of different physical properties above 

Amakinskaya pipe. 

 

 

 

CONCLUSIONS 

 

A number of synthetic models are shown in current study, 

including those taken from real life scenarios (sulphides and 

kimberlite), as well as those models describing hypothetical 

but probable situations (“deep models”). 

 

It becomes evident from synthetic modelling that the 

multiparametric inversion of AEM in IP mode may be 

effective in cases, when no other approach can yield accurate 

results and in some cases drastically improve the results of 

inversions in real life. Such cases are: improved resistivity 

cross-sections, detection of chargeable targets based on only 

airborne TDEM data, detection of deep-seated chargeable 

targets (to the depth of approximately 150 m), under certain 

conditions, imaging targets at depth. Improved interpretation 

(e.g., differentiating between regolith and bedrock chargeable 

anomalies). It should also be stressed that, under certain 

conditions, shallow chargeable layers can effectively mask 

deep conductors that would have been otherwise resolvable by 

the given AEM system. 

 

The real case study shows that applying the Cole-Cole model 

in the inversions of TDEM data enables mapping the 3D 

distribution of physical parameters in the subsurface, which 

bring new value to mineral exploration. . It should be noted, 

that the greatest visibility of the pipe is evident in recovered 

chargeability, which was made possible by virtue of the SCI 

inversion with Cole-Cole modelling. 
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