www.geus.dk

HyGEM - a new Strategic Research Council project for linking geophysical models to hydrological models

Anders Vest Christiansen, GEUS Esben Auken, Dept. of Geoscience, Aarhus University

HyGEM

 Integrating geophysics, geology and Hydrology for improved Groundwater and Environmental Management

Motivation

- Today the integration of geophysical and geological/hydrological data is
 - Subjective
 - Largely un-documented
 - Manual
- Large information loss when combining different data sets through a chain of processes and persons
- Information loss by changes of model space layout

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Objectives

- Create tools for direct and (semi-) automatic integration of geophysical and geological data into geological and hydrological models
- → Better water resources and environmental management
- Results are
 - Reproducible
 - Documented
 - Objective
 - Uncertainties described

Partners, national

- Department of Geoscience, Aarhus University
- The Geological Survey of Denmark and Greenland
- Department of Environmental Engineering, Technical University of Denmark
- Aarhus Vand A/S
- Alectia A/S
- SkyTEM Surveys ApS
- Aarhus Geophysics ApS

Partners, international

- The U.S. Geological Survey (USGS)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.
- Geological Survey of Holland (TNO)

• Dense geophysical airborne data

- Dense geophysical airborne data
 - Processed by a geophysicist to a resistivity model

- Dense geophysical airborne data
 - Processed by a geophysicist to a resistivity model

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

- Dense geophysical airborne data
 - Processed by a geophysicist to a resistivity model
 - Interpreted by a geologist to a geological model

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

- Dense geophysical airborne data
 - Processed by a geophysicist to a resistivity model
 - Interpreted by a geologist to a geological model
 - Translated into a hydrological model by a hydrogeologist (model reduction)

- Example from Steen Christensen
- Synthetic
- Heterogeneous geology with buried valley
- Impermeable basis

In practice:

- Build simplified model from available date e.g. borehole information
- Calibrate the model to fit hydrological data e.g. hydraulic head in wells
- Make prediction with the calibrated simplified model

Simple model parameters, calibration data, head and drawdown predictions

Grid: 100 m × 100 m × "4 layers"

(Confining bed leakances not visualised)

"Real drawdown" versus simple model "predicted drawdown" (realisation 1)

HyGEM developments

- Coupled inversion
 - Geometry: Layer interfaces and thicknesses in groundwater model and geophysical model must be identical
 - Petrophysical: Correlation of electrical and hydraulic conductivity
- Sequential inversion
 - Invert geophysical data *then* invert for hydrological/geological parameters
- Geostatistical approach
 - Statistical links between e.g. lithology and resistivity used to build probable models

Coupled inversion: Geometric

Groundwater model

TEM model

$$PCC = \frac{1}{s_c^2} (d_h - d_{1,g} - d_{2,g})^2$$

Coupled inversion: Petrophysical

Groundwater model

TEM model

$PC=1/S(C+ln(K_2)-ln(\rho_3))^2$

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

GEUS

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Geostatistical approach

- Describe relationship between lithology and resistivity
- GERDA and Jupiter !

Formation	Lithology	Restivity intervals (ohmm)														Thick-	
		0-1	1-2	2-3	3-5	5-10	10-20	20-30	30-40	40-50	50-60	60-80	80-100	100-120	120-160	160-200	ness
																	(m)
Morild	Sand/silt																Up to 212
Troldbjerg	Sand																Up to 95
Ribjerg	Clay/sand																Up to 55
Lønstrup Klint	Clay/sand																Up to 35
Upper Skærumhede Clay	Clay						_										5 - 20
Åsted	Till					_											3 - 12
Middle Skærumhede Clay	Clay																5 - 20
Brønderslev Clay Member	Clay/sand																10 - 55
Brønderslev Till Member	Till, sandy										_						5 - 30
Lower Skærumhede Clay	Clay, silty																Up to 85
Skærumhede Till	Clay till																5 - 15
Upper Cretaceous	Chalk																

Geostatistical links

Gunnik, 2007

www.geus.dk

Geostatistical links

www.geus.dk

HyGEM - a new Strategic Research Council project for linking geophysical models to hydrological models

Anders Vest Christiansen, GEUS Esben Auken, Dept. of Geoscience, Aarhus University