Is the IP Response Related to Geology or Contaminants in a Leachate Plume at the Grindsted Landfill, Denmark?

Introduction

Leachate plumes from landfills and other contaminated sites are a threat for groundwater, surface water, and eco systems. Efficient mapping and site characterization are required for the establishment of reliable monitoring and remediation plans. The GEOCON project aims at advancing geological, geophysical and contaminant monitoring technologies for contaminated site investigations. The perspectives of the IP method are investigated in combination with geological sampling and chemical analyses of water samples. Along a leachate plume from a landfill hosting both household and chemical waste, borehole IP data, geological samples, grain size, and contaminant concentrations in water samples are examined for correlations related to geology and concentrations of contaminants.

The dataset consists of three Ellog drillings with DCIP and Gamma measurements at B1, B3 and B5, drilling with geological sampling at B2, grain size analysis at samples from B1 and chemical analyses of water samples at screens and by Ellog in B1, B2, B3 an B5.

Grindsted Landfill

Grindsted Landfill is situated in the south-western part of Jutland, Denmark. The landfill has been active for about 50 years from the 1930’s to the 1970’s, where household waste and construction material have been deposited along with chemical waste from a local chemical industry (Kjeldsen et al. 1998). The landfill, its leachate plume and the surrounding areas have earlier been subject to a high number of mainly chemical investigations of water samples from boreholes (e.g. Kjeldsen et al. 1998, Bjerg and Kjeldsen 2010).

Plot of logs in B1, EC in B1/B2, lithological log in B2, and grain size in B2

Histograms and cross plot of the Cole-Cole parameters

Geological model at B1/B2, B3 and B5 with water sampling point and DCIP/Gamma logs in the boreholes.

Conclusion

In the primarily sandy sediments at the Grindsted Landfill we have observed:

1. that the formation resistivity overall correlates with the pore water resistivity, representing concentrations of some of the contaminants,
2. that the IP parameters MN, τ, and C seems to primarily correlate with clay content and grain size of the sandy sediments,
3. that MN secundarily correlates with the pore water resistivity, 4) that MN just above clay & lignite layers in B1 have high values that might be related to the presence of long-term high concentrations and contaminants
4. that there is no significant evidence of that the contaminants influence the IP parameters τ and C.

References

Lead author: Ingelise Møller

Co-authors:

Pradip K. Maurya, Nicola Balbarini, Gianluca Fiandaca, Anders V. Christiansen, Helle Holm, Vinni K. Rønde, Knud Erik S. Klint, Esben Auken, Poul L. Bjerg

Institution addresses:

Geological Survey of Denmark and Greenland. Ø. Voldgade 10, 1350 Copenhagen K, Denmark. Tel.: +45 35 23 77 00, Fax: +45 35 23 77 09. E-mail: gm@geus.dk

Aarhus University. C.F. Møllers Allé 4, 8000 Aarhus C, Denmark.

Department of Geoscience, Aarhus University. C.F. Møllers Allé 4, 8000 Aarhus C, Denmark.

Department of Environmental Engineering, Technical University of Denmark. Bygningsstøvet, 2800 Kgs. Lyngby, Denmark.

Keywords: IP, Geophysics, Landfill, Leachate, Contaminants, Grain size.