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Background

- Increase spectral information content by extending
the available time range.

- Increase TDIP data reliability and quality.

- Data driven uncertainty estimates for induced
polarization.
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IP Gating

IP response
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IP response is down-sampled
In windows or “gates”.

Logarithmically increasing
window width to compensate
for lower signal-to-noise ratio.

Gates are multiples of 20 ms
to suppress harmonic noise.

BUT: We lose early time
Information if using long
gates!
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Processing today

Potential and current full waveform
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Linear background drift
removal and log-gating:

Increase of chargeability at
late times du to poor
performance of linear
background model.

Erratic behaviour at early
times while gates are <20ms
due to harmonic noise.
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Processing challenges

Background drift.

Spikes.
Harmonic noise.

EM coupling.

Umeasured uresponse + udrift + uspikes + Unarmonic noise + Uother

UNIVERSITY



Background drift

Main contributor:

current induced electrode
polarization from previous
current injections.
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Background drift

Drift models, potential and current full waveform

Drift Is estimated from
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Electrical fences for
livestock management.

EM coupling from current
pulse transients.
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Spikes

Full waveform potential
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High pass filter and DC-offset removal signal

Non-linear energy operator signal
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Harmonic noise

0.16 Full waveform potential
Raw potential -------- Moving average 20 ms
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Harmonic noise

Ungrmonic noise (1) = Z <am COS <2nm%n) + B, sin (2nm%n>)

m

2
Eresidual = z (umeasured (n) — Uparmonic noise (Tl))
n

Minimizing E,csiquq 10 find parameters «a,,, £, and fj.
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Frequency [Hz]

Amplitude [V]

Harmonic noise

Fundamental frequency model
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Signal is segmented so that
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small.
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Segment length is a trade-off
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Power spectral density [dB/HZ]

-100

-120

Harmonic noise

Welch power estimate

-20
Orignial
40 ¥
40 ® ® Denoised
. x  Estimated peaks
60 | 9P © 10 highest peaks | |
a0

0 500 1000 1500
Frequency [HZz]

fo and harmonics energy Is
reduced to “baseline
energy’.

A subset of highest
harmonics is used for
finding f,.
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Harmonic noise
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Potential and current full waveform
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Erratic behaviour at early
times is removed.

Gates containing spikes at
current pulse switches can
be rejected.
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Tapered gating

Time domain
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Gaussian windows 3.5 times
wider than rectangular gate.

Same width of main lobe but

40 dB higher noise
suppression!
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Tapered gating
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Stacked signal
Convoluted

Fit

IP data
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Stacked IP response sample number
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Convolution of stacked

signal.

Linear fit of convoluted
signal in lin-log space.

Evaluates gate value at

linear fit.

Estimate uncertainty
from convoluted signal

and linear fit.
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Uncertainty estimate

+ STDG,;¢, + STD;

uniform

STD;prq; = \/STDjatm g

1 Ndrift data
STDarife = > (drift data(k) — drift fit(k))?
Ndrift data =1
V
1 Ngate samples
STDyating = ~ (convoluted data(n) — linear fit(n))?
\1 gate samples n=1
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Spectral information content
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Spectral information content
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Conclusions

- Spectral information from time domain IP surveys is
doubled compared to existing procedure.

- TDIP data reliability and quality is increased.

- Data driven uncertainty estimates for individual TDIP
gates.
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Thank you for listening!
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Spikes

Up (Tl) = Umeasured (n) — Umeasured (Tl _ 1)
uz(n) = abs(uy(n)? — u(n — Duy(n + 1))
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Spikes

Full waveform potential

10

High pass filter and DC-offset removal signal

Non-linear energy operator signal
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Tapered gating

Npulses
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Tapered gating
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Stacked signal
Convoluted

Fit

IP data
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Gaussian windows 3.5
times wider than gate.

40 dB noise
suppression for higher
frequencies!
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