Comparison of Cole-Cole and Constant Phase Angle modeling in Time-Domain Induced Polarization

M. LAJAUNIE, P. K. MAURYA AND G. FIANDACA

Content

- 1. Analytical descriptions of the induced polarization
 - Cole-Cole model
 - Constant Phase Angle (CPA) model
 - Ambiguity in time domain
- 2. Synthetic tests
- 3. Comparison with field data

Two classes of Induced Polarization signal

Two classes of Induced Polarization signal

Phase angle changing with frequency •

Cole-Cole model

Phase angle almost constant over the • frequency range investigated

Constant phase angle (CPA) model

Formula :

$$\zeta_{Cole-Cole} = \rho \left(1 - m_0 \left(1 - \frac{1}{1 + (i\omega\tau)^C} \right) \right)$$

Time domain :

				-	-
-				-	
				-	
				-	
-	-			-	-
				-	-
-	-			-	-
-	-		-	-	-
-	-			-	-
-	-			-	
-	-	-	-	-	÷
-				-	5
-	-			-	
-	-		-	-	-
-	-			-	
-	-	-	Ξ.	-	
-	-	-	Ξ.	-	
-	-	-	×.	-	
-	-	-		-	
-	-	-		-	
-	-			-	
-	-			-	
-	-			-	
-			÷.		
				-	-
-	-		-	-	-
-	-			-	-
-	-			-	
-	-			-	
-	-			-	-
-					-
				-	-
Ξ.	з.	Ξ.	Ξ.	Ξ	ŝ
Ξ.	Ξ.	5	1	ŝ	ŝ
1	1	i.	i.	Ē	i
1	i.	i	i	i	i
	1	i	1	i	i
	1			i	1
				i	-
				-	-
				-	
				1	-
				-	
		-		-	
				-	

					-	
			-	-	-	
-			-	-	-	
				-		
				-	- 1	
				-	-	
				-	-	
				-		
				-		
-				-	-	
				-	- 1	
				-	-	
					-	
-		-				
-		-	-	-	-	
				-	-	
_		-0-		- 0	-84	
	-			-	- 1	
				-		
				-	-	
					-	
-				-	-	
-	-		-		-	
-				-	-	
- 1				1	-	
				-		
	÷.			-		
				-	-	
				-	-	
				-	-	
				-	- 1	
	- i-	÷.,	÷.,	-	-	
	-					
					-	
-	-		-	-	-	
				-		
						_
	-	=	Ξ.	-	Ξ	
1	1	÷	ŝ	ŝ	1	
1	ł	i	i	Ē	1	
ł	i	i	i	i	-	
i	ł	i	-	i	-	
į		-	-	-	-	
ļ	-	-	1		-	
		-	-		-	
			-	-	-	
					-	
		-				

Cole-Cole model $\rho = 100 \ \Omega.m$ m0 = 40 mV/V $\tau = 1$ c = 0.5

Formula :

$$\zeta_{Cole-Cole} = \rho \left(1 - m_0 \left(1 - \frac{1}{1 + (i\omega\tau)^C} \right) \right)$$

Time domain :

			-	Ξ.	-	-
	-				-	-
					-	- 1
	-	÷.,		Ξ.	-	-
	-		-		-	-
	-				-	-
	-				-	-
	-	÷.,		Ξ.	-	
	-				-	
	-				-	-
	-		Ξ.	Ξ.	-	-
	-					
	-					
	-				-	- 1
		÷.		Ξ.	-	51
	-					
	-		-		-	-
	-				-	- 1
		Ξ.	Ξ.	Ξ.	-	- 1
	-					-
	-		-		-	-
	-	-		Ξ.	-	-
	-			Ξ.	-	- 1
	-			Ξ.	-	
	-				-	-
	-				-	- 1
	-	÷.,	Ξ.	а.	-	-
		÷.		~	÷	191
	-				-	
	-				-	- 1
	-			Ξ.	-	-
	-					-
	-				-	
	-	÷.,		Ξ.	-	-
	-		-		-	-
	-				-	-
					-	-
	-	÷.,		Ξ.	-	-
	-				-	-
	-				-	-
	-			Ξ.	-	-
			-		-	-
	-		-		-	-
	-					
	-		Ξ.	Ξ.	-	-
			÷.	Ξ.	1	-
	-			×.	÷	
			=	5	5	-
-		÷.,	-	а.	-	- 1
	1				-	-
	-	-	-	1	£	1
	-	-	Ξ.	Ξ.	2	-
		Ξ.	Ξ.	Ξ.	2	
			÷	÷.	÷	
	-		۰.	٥.	4	-01
			÷.	÷.	1	1
	-				-	
			-	Ξ.	2	-
	-	-	Ξ.	Ξ.	-	1
	-		÷.	÷.		1
	-				-	
	-		-		-	-
			Ξ.	Ξ.	2	-
	-		÷.	÷.		
	-					
			-	Ξ.	-	-
	-		Ξ.	Ξ.	-	1

				-	-	
÷			. A.			
	-				-	
	-		-	-	-	
				-		
				-	-	
				-	-	
					-	
				-	-	
				-	-	
				-	-	
			-	-		
				-	-	
					-	
				-		
	-		-		-	
-				-	-	
				-	-	
				-	-	
	÷.		÷.		-	1
			-	-	-	
				-	-	
-					2	1
				-	-	
			-	-	-	
				-	-	
					-	
	-		-	-	-	
-			-	-	-	
				-	-	
				-		
			-	-		
-	-	-	-	-	-	
				-	-	
				-	-	
			-	-	-	
-				-	-	
-	-	-		-	-	
		-		-	-	
	-			-	-	
				-	-	
				-	-	
				-	-	
				-	-	
	-	÷.,		-	-	
÷	-			-		1
				-		
-		-	-	-	- 1	1
-					2	1
-	- 21			-	21	1
-	- 21			1	1	1
	÷.		÷.	-	÷.	1
						J
					×.	-

Cole-Cole model $\rho = 100 \ \Omega.m$ m0 = 40 mV/V $\tau = 1$ c = 0.5

c = 0.3

Formula :

$$\zeta_{Cole-Cole} = \rho \left(1 - m_0 \left(1 - \frac{1}{1 + (i\omega\tau)^C} \right) \right)$$

Time domain :

	-	-	2	2	2	2
	-	Ξ.			-	
	-					
	-				-	
	-	Ξ.	-		-	-
	-		-		-	
	-				-	
	-		-		-	-
	-					
	-		-	-	-	-
	-	Ξ.	-		-	-
		-				
	-	-	-		1	
					-	7
	-	-	-	-	÷	÷
	-		-		-	
	-		-		-	
	-	-	-		÷	-
					2	-
					-	
			÷.	÷.	÷	1
		5		Ξ.	Ξ	=
	-		-		-	
	-		-		-	-
	-				-	
	-		-		-	-
	-	÷	۰.	۰.	÷	÷
	-					
	-		-		-	-
	-		-		-	-
	-					
	-		-		-	
	-		-	-	-	-
	-		-		-	-
					-	
	-		-		-	
	-	-	-	-	-	-
	-				-	
	-		-	-	-	-
	-	-	-	-	-	-
	-	Ξ.			-	
	-			н.	÷	-
	-				-	
	-				-	-
				5	ŝ	ŝ
_	1	1	÷	i.	i	ŝ
	1	į	i	i	i	i
	-		i	Ì	-	i
						ļ
	-					
				· · · · · · · · · · · · · · · · · · ·		
				····		

	-				-	
	-				-	
	-					
					-	
	-				-	-
	-		-		-	
	-					
	-		-			
	-				-	-
	-					
					-	-
	-		-		- 1	-
	-		-		-	
	-				-	
	-					
	-	-		-	-	-
	-		-	-	-	-
	-		÷.		- 2	-
	-	÷	1	÷.	-	1
	-		-		- 2	- 21
	-	-	-		- 2	12
	-				-	
	-		÷.		- 2	-
					-	-
	-	÷.	÷.		- 6	- 61
	-		÷.	-	- 2	-
	-		÷.	÷.	- 6	
	-		÷.	÷.	-	
	-					
	-			÷.		÷
	-				-	
	-					
	-					
	-		-		-	
	-				-	
	-					5
	-				-	-
	-		-			
					-	-
	-		-		- 1	
	-		-		-	
	-		-		- 2	-
	-		1		-	1
١.	-		Ξ.		-	
4			÷.		- 2	-
1			÷.		-	1
			-		-	-
	- 1	×.	÷.		- 2	-
		•	÷.		-	1
		- 19		÷.		
	-	2.7	-	a.	-	-
	-		-25	ni.	-	÷
				- 10	s.	1
	-				•	÷.
				÷.	-27	-
	-			÷.	-	25
-					-	
	-					
		-	-		-	
	-		-		-	
	-	-		2		
	-					
	-					
-					-	
	-					
	-	-			-	
		-		1		
	-		2	-		-
					-	-
	-			-	-	
	-				-	
	-				-	
	-					

Cole-Cole model $\rho = 100 \ \Omega.m$ m0 = 40 mV/V $\tau = 1$ c = 0.5 c = 0.3 $\tau = 0.1$

Formula :

$$\zeta_{Cole-Cole} = \rho \left(1 - m_0 \left(1 - \frac{1}{1 + (i\omega\tau)^C} \right) \right)$$

Time domain :

				-	2	
				-	-	
-						
-				-		
-		-	-	-	-	
				-	-	
				-		
-						
-		-	-	-		
					12	
-			- 5	7	17	
-			-	9	9	
				-		
-				-		
				-	-	
-						
-		-	-	-	-	
-						
				-	-	
-				-	-	
-						
				-		
	- i -		÷.		я.	
				-	-	
				-		
-						
				-	-	
-		-	-	-		
-		-	-	-	-	
				-	-	
				-	-	
-		-	-	-		
				-	-	
				-		
-		-	-	-		
-				-	-	
				-		
-		-	-			
-				-		
				-	-	
				-		
the second		-			-	
	-	-	1			
			-	-	-	a
				-	17	
-	-		-	-		
	-	-	-	-	-	
-0-	-0-	-0-	-0-	-0	÷	
				-		
-						
-		-		-	-	
- 21		- 21	- 21	-	2	
					÷	
-		-		-	-	
1				1	2	
- 6	÷.			-		
					÷	
-		-	-	-	-	
				-	-	

	-	-	-		-		
	-					-	
	-	-	-		-	51	
		-					
					-	-	
	-	-		Ξ.			
	-						
		-					
	-						
	-		-		-		
		-					
	-	-					
	-	-	-		-	-	
	-			Ξ.			
	-						
		-					
	-	-	-	-	-		
	-	-			-	-	
		e		÷			
	-	-	-		-	31	
	-	-				21	
				Ξ.	-		
	-						
	-						
	-						
	-	-	-	-	-		
	-	-	-		-		
		-					
	-	-		Ξ.	Ξ.	-	
	-			Ξ.	-		
	-	-					
	-	-			-		
	-		-	-	-	-	
				Ξ.	-	S	
	-				-	-	
	-	-			-	-	
	-	-	-	-	-	-	
	-	-				-	
•	£						
	•			Ξ.	-	G I	
	-				-	-	
		h					
		•					
		1.4	κ.			-	
	-	- 1	•	а.,	-		
	-	-	- 1	•	-	-	
	-			- 1	۰.	21	
	-		-	÷.,	25	٠.	а.
						25	а.
-							
	-	÷	-		-		
	-	-		2.			
	-		-	-	-	1	
	-	-	-		-		
	-	-					
	Ξ.	5	5	Ξ.		-	
_	1		1	5	÷		I
	1		1	1	Ē		I
	i.		-		i		I
					i		I
					ļ		
					i		
					1		
					-		

 Cole-Cole model $\rho = 100 \ \Omega.m$ m0 = 40 mV/V $\tau = 1$ c = 0.5
 c = 0.3
 $\tau = 0.1$
 m0 = 10

Constant Phase Angle (CPA) model

Formula :

$$\zeta_{CPA} = K(i\omega)^{-b}$$

Time domain :

-		-		-	-	
-					-	
			Ξ.			
-			Ξ.	-		
-	-	-		-	-	
-			Ξ.			
-	Ξ.		Ξ.			
-		-		-		
-					-	
	Ξ.					
-		-		-	-	
-						
-			н.			
-	-	-		*	-	
-			Ξ.	5		
-						
-			Ξ.	-		
-				-		
-				-		
-			Ξ.			
-				-	-	1
-			Ξ.	-		
-	Ξ.		Ξ.	-		
-				-	-	
-			Ξ.		-	
-						
-			с.		-	
-	-			-	-	
-			5	=		
-			Ξ.			
-					-	
-			Ξ.	=		
-			Ξ.			
-					-	
-			Ξ.			
-	÷	÷	÷	÷	÷	
-				-	-	
			Ξ.			
-						
-	-					
			Ξ.			
-			Ξ.	-		
-			Ξ.			
-					-	
				5	7	
-			Ξ.		-	
-			с.	2	-	
-			Ξ.		-	
-				-		
-			Ξ.		-	
-			Ξ.		-	j
-		-				
-			Ξ.		-	
-	-	-	-		1	
		г		г	г	ļ

-						
		÷.	÷.		-	
-	-					
-						
		÷.	÷.	÷	-	
		-	-	-		
	-	-	-	-	-	
-		-	-	-		
-						
-	-	-	-	-	-	
-	-	-	-	-	-	
	-		-			
-	-					
-						
-		-		-	-	
-		-		-		
	-		-	-		
			Ξ.			
-	-	-	-	-		
-	-		-	-		
-		-	-	-		
_						
-	-					1
-			-			
-	-	÷.	÷.	-	-	
-	-	-	-	-		
				-		
-				÷		
-		÷.	÷.	-	-	
-	-		-			
-	-	-	-	-		
-						
-				÷		
-	-	÷.	÷.	-		
	-		-			
-	-	-	÷.,	-		
-		-	-			
			τ.	7	7	
:	τ	Ξ	Ŧ	ï	3	
Ξ	Ξ	ĩ	ĩ	Ĩ	Ĩ	
E	Ŧ	Ĩ	Ĩ	Ī	Ī	
I	Ē	Ĩ	Ī	Ī	Ī	
	Ī	Ī	Ī	1	1	
-	Ī	Ī	Ī	Ī	1	
	Ī	Ì	Ī			
	Ī		Ī			
	ļ		Ī			
			Ī			

CPA model ϕ = 6.64 mrad

Constant Phase Angle (CPA) model

Formula :

$$\zeta_{CPA} = K(i\omega)^{-b}$$

Time domain :

	-			27	2		
	-	Ξ.		Ξ.			
	-			-			
	-			Ξ.			
	-						
	-						
	-			-			
	-			а.		-	
	-					-	
	-		-	-	٤.	2	
	-						
	-						
	-			-			
	-		Ξ.	Ξ.			
	-						
	-			-	-		
				Ξ.			
	-			Ξ.			
	-			-	-		
				с.			
				Ξ.			
				Ξ.			
				-			
	-			-			
	-			Ξ.			
				-			
	-			Ξ.			
	-		-		-	-	
	-						
	-			Ξ.		-	
	-					-	
	-	-	-		-		
				-			
	-	-	-		-		
	-			-			
	-						
	-					-	
	-						
	-		-	-	-		
	-						
	-			φ.	~		
	-			-	-		
				с.			
	-		Ξ.	Ξ.		-	
				Ξ.			
	-			Ξ.		-	
	-			Ξ.			
	-		-				
	-	-		Ξ.	=		
	-		Ξ.		Ξ.		
-						÷	
	-	-	-		-	-	
	-		-			٠	

	-		-	-		-	
	-			-	-		
	-	-	-	-	-	-	
	_		-	-	-	-	
	-		-				
				-			
	-		-	-	-		
	-		-			-	
				-			
	-		-		-	-	
	-		-	-	-	-	
	-	-	-	-	-	-	
	-			-	-		
	-		-	-	-		
	-			-	-		
	-						
1	-						
	-		-	-	-		
	-		Ξ.	2			
	-	-	-	-	-		
	-		-	2			
	-						
	-		-				
	-						
	-			÷	÷		
	-		÷.	4	-	-	
	-	-		-	-		
				-	-		
	-		-	-	-	-	
		1	1	2	1	-	
	Ξ.	1	÷	ŝ	ŝ	ŝ	į
	1	i.	÷	ì	i	i	ì
	i.	÷	i	į	į	į	ì
	1	1	1	i	1	1	1
	1	ł	1	i	1	1	-
	1	1	1	i	i	1	
	-	1	1	1	1	-	
		l	1	1	-	-	
		1	1	1	-	-	
		1	-	-	-	-	
		1		-	-	-	
		1		-			
		1	-				
		1					
			-				

CPA model ϕ = 6.64 mrad

 ϕ = 4.53 mrad

Constant Phase Angle (CPA) model

Formula :

 $\zeta_{Drake} = K(i\omega + \omega_L)^{-b}$

Time domain :

Title

COLE-COLE MODEL

CPA MODEL

- Phase [miliradians]

			-
_			
			а.
-			
-	-		
			н.
			а.
			а.
			11
			_
÷			ı
1			I
į			
į			l

Title

COLE-COLE MODEL

CPA MODEL

Can we distinguish between the two classes with time domain data?

COLE-COLE MODEL

CPA MODEL

Content

- 1. Analytical descriptions of the induced polarization
 - Cole-Cole model
 - Constant Phase Angle (CPA) model
 - Ambiguity in time domain
- 2. Synthetic tests
- 3. Comparison with field data

Content

1. Analytical descriptions of the induced

polarization

- Cole-Cole model
- Constant Phase Angle (CPA) model
- Ambiguity in time domain

2. Synthetic tests

3. Comparison with field data

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	C
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	С
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	C
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Parameters for the models

ρ	m0	τ	C
100 ohm.m	40 mV/V	[0.001 - 10]	[0.1; 0.3; 0.5]

Frequency exponent c

Small c values increase the similarity between the two models

The role of τ depends highly on the acquisition time range

Small c values increase the similarity between the two models

The role of τ depends highly on the acquisition time range

Small c values increase the similarity between the two models

Two decades of data is a minimum to distinguish both models

The shape of the CPA decays is ENTIRELY determined by the acquisition settings (current On-time and Off-time, stack...)

The role of $\boldsymbol{\tau}$ depends highly on the acquisition time range

Small c values increase the similarity between the two models

Content

1. Analytical descriptions of the induced

polarization

- Cole-Cole model
- Constant Phase Angle (CPA) model
- Ambiguity in time domain
- 2. Synthetic tests
- 3. Comparison with field data

Field data – 2D comparison

Field data – 2D comparison

- 2D variations give complex shapes
- Cole-Cole : able to retrieve the complex shapes
- CPA : unable to retrieve the complex shapes

Field data – 2D comparison

- 2D variations give complex shapes
- Cole-Cole : able to retrieve the complex shapes
- CPA : unable to retrieve the complex shapes

-> no variation of the shape of IP decays also in 2D

What about the phase ?

The distinctness depends highly on the acquisition time range :

	High c	Low c
More than 2 decades of time	Highly distinguishable	Not very distinguisha
Less than 2 decades of time	Not very distinguishable	Not distinguishable

Specific values for Tau and c increase the similarity between the 2 models

low c

Tau in the center of the logarithmic time range

2D field data can contain complex shapes that only the Cole-Cole model can fit.

In any case, the inverted phase shift is in very good agreement with the order of magnitude of the maximum phase shift.

fit. er of

The distinctness depends highly on the acquisition time range :

	High c	Low c
More than 2 decades of time	Highly distinguishable	Not very distinguisha
Less than 2 decades of time	Not very distinguishable	Not distinguishable

Specific values for Tau and c increase the similarity between the 2 models

low c

Tau in the center of the logarithmic time range

2D field data can contain complex shapes that only the Cole-Cole model can fit.

In any case, the inverted phase shift is in very good agreement with the order of magnitude of the maximum phase shift.

fit. er of

The distinctness depends highly on the acquisition time range :

	High c	Low c
More than 2 decades of time	Highly distinguishable	Not very distinguisha
Less than 2 decades of time	Not very distinguishable	Not distinguishable

Specific values for Tau and c increase the similarity between the 2 models

low c

Tau in the center of the logarithmic time range

2D field data can contain complex shapes that only the Cole-Cole model can fit.

In any case, the inverted phase shift is in very good agreement with the order of magnitude of the maximum phase shift.

n fit. er of

The distinctness depends highly on the acquisition time range :

	High c	Low c
More than 2 decades of time	Highly distinguishable	Not very distinguisha
Less than 2 decades of time	Not very distinguishable	Not distinguishable

Specific values for Tau and c increase the similarity between the 2 models

low c

Tau in the center of the logarithmic time range

2D field data can contain complex shapes that only the Cole-Cole model can fit.

In any case, the inverted phase shift is in very good agreement with the order of magnitude of the maximum phase shift.

fit. **der of**

Thank you for your attention !

