

The University of British Columbia Geophysical Inversion Facility

Airborne IP for Kimberlite

Douglas W. Oldenburg and Seogi Kang

IP workshop 2016 June 7th 2016

Acknowledgements

- Ken Witherly, Joel Jansen, Sean Walker
- Pereguine Diamonds
- S Devriese, K. Davis D. Fournier, M. McMillan
- Others in the UBC-Gif group

Motivation: negative transients

• Tli Kwi Cho (TKC) VTEM data

Signature of chargeable rock (Weidelt, 1982)

TKC kimberlite complex

At 90 micro-s

Decay curve

slide 3

2016 IP workshop

Kimberlite exploration

- Questions:
- How to deal with negatives in airborne time domain EM (ATEM) data
- Can we recover a 3D chargeability distribution?
- Does it have practical utility in diamond exploration?"

Outline

- Complex conductivity for kimberlites
- IP for inductive sources
- 3D TEM-IP inversion workflow
- Airborne IP inversion for VTEM data at TKC
- A 3D rock model at TKC
- Summary

Complex conductivity

Cole-Cole model (Pelton et al., 1978)

Complex impedances at TKC

From GSC Lab

Geological Survey of Canada (2016)

Kimberlite pipe structure

Devriese et al. (2016)

Estimated Cole-Cole parameters

Division	Depth (mbsf)	${ m Q}_{\infty}$ (ohm-m)	σ_∞ (S/m)	η (V/V)	τ (micro-s)	с
ХУК	266	81.3	2.77x10 ⁻²	0.539	3.97x10 ¹	0.6
VK	78	49.0	3.13x10 ⁻²	0.337	10.6x10 ¹	0.7

Workflow

Invert TEM data,

to recover $\,\sigma_\infty$

Compute IP datum Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Estimate intrinsic IP parameters Recovered intrinsic IP parameters:

Pseudo-chargeability at i-th pixel

$$\tilde{\eta}_i = f(\sigma_{\infty}, \eta, \tau, c; t)$$

 σ_{∞} : Conductivity at infinite frequency η : Chargeability τ : Time constant (s) c: Frequency dependency

Inductive source IP

Workflow

Invert TEM data,

to recover $\,\sigma_\infty$

Compute IP datum Remove EM responses

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Estimate intrinsic IP parameters Workflow is the same but ...

- Polarization currents generated by a transient electric field
- Airborne IP data have many Tx-Rx pairs

IP currents

Cole-Cole model in Time domain

 $\eta = 0.5$

 $\tau = 0.02$ c = 1

0.06

0.08

0.10

Ohm's law

$$\vec{j}(t) = \sigma(t) \otimes \vec{e}(t) = \sigma_{\infty} \vec{e}^{F}(t) + \vec{j}^{IP}$$

Superscripts: F: Fundamental IP: Induced polarization

where

Linearization

• IP current density

0.0

-0.2

JB

Off-time

0.5

+ ref

1.0

Time (ms)

$$\vec{j}^{IP}(t) = \sigma_{\infty} \vec{e}^{IP}(t) + \Delta \sigma(t) \otimes \vec{e}(t)$$
Pseudo-chargeability
Approximating $\vec{e}(t) \approx \vec{e}^{ref} w^{e}(t)$
 $\vec{j}^{IP}(t) = \sigma_{\infty} \vec{e}^{IP}(t) - \tilde{\eta}(t) \vec{j}^{ref}$
 $w^{e}(t) = \frac{\vec{e}(t) \cdot \vec{e}^{ref}}{\vec{e}^{ref} \cdot \vec{e}^{ref}}$

$$\vec{\eta}(t) = -\frac{\Delta \sigma(t) \otimes w^{e}(t)}{\sigma_{\infty}}$$

$$\vec{j}^{ref} = \sigma_{\infty} \vec{e}^{F}_{max}$$

slide 16

2.0

1.5

Linearization

• By applying Biot-Savart's law (similar to MIP)

$$\vec{b}^{IP}(\vec{r};t) = \frac{\mu_0}{4\pi} \int_{\Omega} \frac{\vec{j}^{IP} \times \hat{r}}{|\vec{r} - \vec{r}_s|^2} dv_s \qquad \text{where } \hat{r} = \frac{\vec{r} - \vec{r}_s}{|\vec{r} - \vec{r}_s|}$$

• We can have linear form:

$$d^{IP}(t) = G\tilde{\eta}(t)$$

 $G(\sigma_{\infty})$: Sensitivity function $\tilde{\eta}$: Pseudo-chargeability (Seigel, 1974; Chen et al., 2006)

Challenge: multiple Tx-Rx pairs

slide 18

2016 IP workshop

Field example: TKC

Backgrounds of TKC

- Kimberlite deposit located 360 km north east Yellowknife, NWT
- Discovered by airborne geophysics
- Two pipes:
 - DO-18 (north)
 - DO-27 (south)

VTEM data at TKC

VTEM data

JB

- DO-18: even the earliest time is negative (A1)
 - No data for TEM inversion
- DO-27: late time has strong negatives (A4)
- Resistive background
 - Away from pipes data are noisy

Step 1: Conductivity inversion

Observed. vs. Estimated

slide 22

Invert TEM data, to recover

Compute IP datum Remove EM responses

Invert TEM data, to recover Step 2: EM-decoupling Compute IP datum **Remove EM responses** Linearized equations IP = Observation - Fundamental Invert d^{IP} data. recover pseudo-chargeability Estimate intrinsic **IP** parameters $d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}]$ $F[\cdot]$: Maxwell's operator

130 micro-s

Fundamental

Estimated at 130 micro-s

$\begin{array}{l} \text{Step 2: EM-decoupling} \\ \text{IP = Observation - Fundamental} \\ d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}] \quad F[\cdot]: \text{Maxwell's operator} \end{array}$

130 micro-s

$\begin{array}{l} \text{Step 2: EM-decoupling} \\ \text{IP = Observation - Fundamental} \\ d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}] \quad F[\cdot]: \text{Maxwell's operator} \end{array}$

0.448

0.392

0.336

0.280

0.224

0.168

0.112

0.056

0.000

410 micro-s

UBC

$\begin{array}{l} \text{Step 2: EM-decoupling} \\ \text{IP = Observation - Fundamental} \\ d^{IP} = F[\sigma(t)] - F[\sigma_{\infty}] \quad F[\cdot]: \text{Maxwell's operator} \end{array}$

410 micro-s

Step 3: 3D IP inversion

Recovered 3D pseudo chargeability

130 micro-s

410 micro-s

UBC

slide 27

Compute IP datum Remove EM responses

Invert TEM data.

to recover

Linearized equations

Invert d^{IP} data, recover pseudo-chargeability

Estimate intrinsic IP parameters

2016 IP workshop

Step 4: Estimate η and τ

Comparison with rock samples

Estimated Cole-Cole parameters

Division	Depth (mbsf)	${ m Q}_{\infty}$ (ohm-m)	σ_∞ (S/m)	η (V/V)	τ (micro-s)	с
ХУК	266	81.3	2.77x10 ⁻²	0.539	3.97x10 ¹	0.6
VK	78	49.0	3.13x10 ⁻²	0.337	10.6x10 ¹	0.7

What can we infer from IP?

Anomalous pseudo-chargeability Pseudo-chargeability

- A4 can be distinguished from A1-A3 (time constant)
- A3 can be distinguished from A1-A2 (chargeability)
- DO-18 pipe: small time constant
- DO-27 pipe: two different chargeable bodies (small and large time constant)

Conclusions

- We can invert airborne TEM data
 - 3D TEM-IP inversion workflow

$\left(\begin{array}{c} \text{Invert TEM data,} \\ \text{to recover } \sigma_\infty \end{array} \right)$
Compute IP datum Remove EM responses
Linearized equations
$\left(\begin{matrix} \text{Invert } d^{IP} \text{ data,} \\ \text{recover pseudo-chargeability} \end{matrix}\right)$
Estimate intrinsic IP parameters

Conclusions

- We can invert airborne TEM data
 - 3D TEM-IP inversion workflow
- Apply this to TKC field example

Conclusions

- We can invert airborne TEM data
 - 3D TEM-IP inversion workflow
- Apply this to TKC field example
- Is our question answered?
 - "Can airborne IP helps kimberlite exploration?"

2016 IP workshop

Thank you

2016 IP workshop

What can we infer from IP and σ ?

0

 10^{4}

 10^{3}

Time constant (micro-s)

 10^{2}

Anomalous contour map

Pseudo-chargeability

Conductivity

Most of IP bodies have high ulletconductivity

Chargeability 0.6

0.

0.2

 $^{0.0}_{10^{1}}$

2016 IP workshop

"Can airborne IP help?"

Devriese et al. (2016)

- Various Rock units:
 - Kimberlites: XVK/VK/PK/HK
 - Till, Host rock
- Different physical prop.
- Various airborne geophysical surveys:
 - Mag / Gravity
 - AFEM / ATEM

Physical Properties

Division	Dens.	Susc.	Cond.	Charg.
ХVК	Low	Med.	High	?
VK	Low	Med.	High	?
РК	Low	Med.	High	?
нк	Low	High	Med.	?
Till	Med.	Low	Med.	?
Host rock	Med.	Low	Low	?

"Everything inverted in 3D"

A final petro physical model

From Geophysics

A final petro physical model

From Geophysics

Division	Dens.	Susc.	Cond.	Early Charg.	Late Charg.
R0	Med.	Low	Low	Low	Low
R1	Low	Med.	Low	Low	Low
R2	Low	High	Low	Low	Low
R3	Low	Med.	High	Low	Low
R4	Low	Med.	High	Low	High
R5	Low	Med.	High	High	Low

A final petro physical model

From Geophysics

Division	Dens.	Susc.	Cond.	Early Charg.	Late Charg.	Kimberl ites
R0	Med.	Low	Low	Low	Low	?
R1	Low	Med.	Low	Low	Low	?
R2	Low	High	Low	Low	Low	нк
R3	Low	Med.	High	Low	Low	?
R4	Low	Med.	High	Low	High	РК
R5	Low	Med.	High	High	Low	VK, XVK

From **Drillings**

