

Geometrical constraints for membrane polarization

Andreas Hördt, Katharina Bairlein, Hermann Stebner TU Braunschweig

Extended membrane polarization model

Marshall and Madden (1959)

Different charge transport due to

- charge densities
- ➤ geometry

Electrical double layer (EDL)

Different charge transport through different ion concentrations

Stern layer: partition coefficient

Integrate concentration over pore radius.

3

Model parameters

Property	Symbol	Value	
Length of pore 1	L_1	500 µm	
Length of pore 2	L_2	5 μm	
Radius of pore 1	r ₁	200 nm	
Radius of pore 2	<i>r</i> ₂	20 nm	
Ion concentration	<i>c</i> ₀	$1 mol/m^3$	
рН	рН	6	
Mobility of all ions	$\mu_{p1} = \mu_{p2} =$	$5.10^{-8}m^2/(Vs)$	
	$\mu_{n1} = \mu_{n2}$		
Temperature	Т	293 K	
Zeta-potential	ς	-75mV	
Partition coefficient	f_Q	0,2	

Geometrical parameters

Fluid properties

EDL properties

Technische Universität Braunschweig

Sample phase spectra

	1	2	3
R1 (nm)	200	200	1000
R2 (nm)	20	20	20
L1(Micrometer)	500	5	50
L2 (Micrometer)	5	0,05	0,5

Scope

Constraints on

- Pore radii
- Pore lengths
- ≻ L/r ratios
- ... to simulate measured phase spectra

> Are the required geometries "realistic"

"Typical" phase spectra of sandstones

Joseph et al. (2015)

Range of relaxation time scales of sandstones

Exploration of parameter space Part 1: pore radii

Braunschweig

Institut für Geophysik und extraterrestrische Physik

Braunschwei

Exploration of parameter space Part 1: pore radii

Summary pore radii

Minimum pore radius in the range $<< 1 \ \mu m$ to produce measurable phase shifts

Time scale fairly independent of pore radii

Are small pore radii relevant?

Figure 2. Mercury injection curves for the sandstone samples GR, Bu12, and Bu3.

Weller et al. (2011)

Even 10 nm pores occupy a significant portion of the volume

Are small pore radii relevant ?

Correlations of S_{por} with σ "

Weller et al. (2015)

MB (high resolution) better correlation \rightarrow small pore radii

Exploration of parameter space 2: pore length

Braunschweig

page 14

TU Braunschweid

Excursion: Relaxation of concentration gradients

IGEP TU Braunschweig

Exploration of parameter space 2: pore length

Exploration of parameter space 2: pore length

Summary pore length

Pore length controls time scale

Optimum length ratio connected to radius ratio:

$$\sqrt{\frac{L_1}{L_2}} = \frac{r_1}{r_2}$$

Length and radii:

"Small" radii required for large phase shifts "Large" length required for large time scale (> 1s) Large L/r ratio required ?

Exploration of parameter space Part 3: L/r

page 19

TU Braunschweid

Physik

Can L/r ratios be constrained?

Figure 1. Micrographs of thin sections of the samples (a) GR with the size $850 \times 690 \ \mu\text{m}^2$, (b) Bu12 with the size $850 \times 690 \ \mu\text{m}^2$, and (c) Bu3 with the size $2125 \times 1700 \ \mu\text{m}^2$.

Weller et al. (2011)

Bairlein et al. (2016)

Describing real pore space not trivial Current high-resolution methods do not give information on L

Conclusions

- Wide range of time scales and phase shifts simulated
- Membrane polarization Not particular for long time scales
- Pore length controls time scale
- Pore radii AND length control phase shift

$$\sqrt{\frac{L_1}{L_2}} = \frac{r_1}{r_2}$$

No evidence that these are "unrealistic"

Acknowlegdements

