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Exponential analysis in physical phenomena
Andrei A. Istratova) and Oleg F. Vyvenko
Institute of Physics of St.-Petersburg State University, Ulianovskaya 1, St. Petersburg 198904, Russia

~Received 13 July 1998; accepted for publication 16 November 1998!

Many physical phenomena are described by first-order differential equations whose solution is an
exponential decay. Determining the time constants and amplitudes of exponential decays from the
experimental data is a common task in semiconductor physics~deep level transient spectroscopy!,
biophysics~fluorescence decay analysis!, nuclear physics and chemistry~radioactive decays, nuclear
magnetic resonance!, chemistry and electrochemistry~reaction kinetics! and medical imaging. This
review article discusses the fundamental mathematical limitations of exponential analysis, outlines
the critical aspects of acquisition of exponential transients for subsequent analysis, and gives a
comprehensive overview of numerical algorithms used in exponential analysis. In the first part of
the article the resolution of exponential analysis as a function of noise in input decays is discussed.
It is shown that two exponential decays can be resolved in a transient only if the ratio of their time
constants is greater than the resolution limit, which can be explicitly calculated from the
signal-to-noise ratio in the transient. Although the signal-to-noise ratio is generally limited by the
sensitivity of the equipment, it is shown that digitalization of the decays may be a major source of
noise. The requirements for type of analog-to-digital converter, number of digitized data points and
duration of digitized transients, which must be met to obtain the theoretical resolution limit and to
improve stability of the exponential analysis, are formulated. The second part of the review article
gives an overview and comparison of major numerical techniques of exponential analysis, such as
the nonlinear least squares fit, the Prony method, the method of modulating functions, the method
of moments, the Laplace–Pade´ approximation, the Tikhonov regularization method, the Gardner
transformation, the method of maximum entropy and others. ©1999 American Institute of
Physics.@S0034-6748~99!04502-5#
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I. INTRODUCTION: EXPONENTIAL RELAXATION IN
PHYSICS

First-order differential equations are among the m
common equations in physics. They apply when the rate
increase or decrease of a certain function of timef (t) is
proportional to the valuef itself:

d f~ t !

dt
52l f ~ t !. ~1!

The solution of this equation is an exponential decay of
form

f ~ t !5A exp~2lt !1B, ~2!

whereA is the decay amplitude,B is a constant~the baseline
offset!, andl is the decay rate~also called decay constant, o
rate constant!, which is inversely proportional to the tim
constant of the decayt, l5t21. Examples of application o
Eqs.~1! and~2! are analysis of radioactive decays, ultrare

a!Present address: University of California at Berkeley, LBNL, Mailst
62-349, 1 Cyclotron Rd., Berkeley, CA 94720; electronic ma
istratov@socrates.berkeley.edu
1230034-6748/99/70(2)/1233/25/$15.00
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tivistic heavy-ion experiments in nuclear physics, phot
correlation spectroscopy, studies of fluorescent decays
biophysics, studies of sedimentation equilibrium, nucle
magnetic resonance in chemistry and medical imaging,
determination of molecular size distributions from laser lig
scattering data, just to mention a few. Exponential decays
common in solid state physics,1 medicine,2–6 biology and
biophysics,7–16geophysics17,18optics,19 engineering,20 chem-
istry and electrochemistry.21–28

The amplitude of the exponential decayA and the decay
ratel carry information about the nature of the phenomen
being studied. The amplitudeA usually corresponds to th
initial concentration of the decaying species, and the de
rate l is frequently determined by the energy change
volved in the transition from one state of the system in
another. Analysis of exponential decays given by Eq.~2! is
straightforward and would not, by itself, deserve a spec
discussion. However, it commonly happens in physics tha
number of exponential processes take place simultaneou
and experimental equipment yields a signal which is a s
of several exponential components. In this case, one ha
solve a mathematical problem of decomposing a multi
exponential into its constituent parts. This task is not
3 © 1999 American Institute of Physics
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simple as it may appear at first glance. In fact, it is one of
oldest and yet most persistent problems of functional an
sis. As early as 1795, Prony29 devised an algebraic schem
that could separate a small number of exponentials w
similar amplitudes but substantially different time constan
The method, however, did not differentiate well between
ponentials with close time constants. Prony recognized
limitation as fundamental, and many modern authors30,31

have echoed this view.
The authors of this review article have been involved

investigations of electrical activity of defects i
semiconductors32,33 using the method of deep level transie
spectroscopy~DLTS!.34 This method extracts information o
deep level defects from the measurements of capacitanc
the reverse-biased Schottky diode. The reverse bias is alt
periodically, which results in capacitance transients. A ma
part of DLTS data evaluation is the exponential analysis
these transients. The increasing requirements for resol
closely spaced deep energy levels with similar decay t
constants35–37 stimulated the development of advanced n
merical algorithms for DLTS data analysis. Our literatu
survey revealed that the problem of accurate exponen
analysis is a very intensively studied problem that is co
mon for many fields of science. A search in the INSPE
database using ‘‘exponential analysis’’ as a keyword retu
as many as about 8900 articles published between 1969
1998. Unfortunately, in most cases researchers engage
one area of science are not aware of similar studies mad
the other fields. This results in parallelism in research an
an enormous wasted effort. Moreover, many physicists s
to be unaware of some fundamental limitations of the ex
nential analysis, which are known from the mathemati
literature.

This review article is, to the best of our knowledge, t
first article to summarize the mathematical and physical
erature dealing with the problem of exponential analys
Surely, we could not cover all areas of application of exp
nential analysis, and could not provide references to all
ticles where application of exponential analysis enabled
perimentalists to make substantial progress in understan
physical phenomena. Instead, we present the readers w
general picture of the current status of exponential analy
focused on fundamental understanding of problems invol
in exponential analysis and on discussion of existing al
rithms.

This article consists of three parts. In the first part~Secs.
II–V ! we discuss the principle limitations of exponent
analysis and show that the resolution limit of the analysis
determined~and can be calculated using formulas reported
the literature! by the signal-to-noise ratio~SNR! in the expo-
nential decays. Practical recommendations for data acq
tion and averaging, which enable one to improve the ac
racy of the exponential analysis, are given. In the second
~Sec. VI! we present an overview of major numerical alg
rithms for exponential analysis. Finally~Sec. VII!, we com-
pare these methods on the basis of literature data.
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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II. CLASSIFICATION OF PROBLEMS TO BE SOLVED
IN EXPONENTIAL ANALYSIS

This review article deals with the numerical analysis
experimentally measured decaying functions of timef (t)
which stem from the processes described by the expone
law. However,f (t) is not necessarily described by a sing
decay rate. In this treatment, we will emphasize three ca
of exponential analysis. In the simplest case, further refer
to as ‘‘monoexponential analysis,’’ the transient is assum
to be a single exponential, which is characterized by
decay amplitudeA and decay ratel:

f ~ t !5A exp~2lt !. ~3!

The decay may also contain a baseline offsetB as in Eq.~2!.
Most algorithms discussed in this review article require
baseline offset to be subtracted before analysis. Theref
we will assume in the following~except where specified ex
plicitly ! that the baseline offsetB50.

If the decay consists of a sum ofn exponentials of the
form Eq.~3!, we will discuss the analysis of ‘‘multiexponen
tials decays,’’ or ‘‘multiexponential analysis:’’

f ~ t !5(
i 51

n

Ai exp~2l i t !. ~4!

The goal of the multiexponential analysis is to determine
number of exponential componentsn, their amplitudesAi ,
and decay ratesl i . Finally, in the general case when th
decay is described by a continuous distribution of emiss
rates given by a spectral functiong(l) rather than by a sum
of discrete exponential transients, we will discuss the ana
sis of ‘‘nonexponential transients,’’ or spectroscopic me
ods of exponential analysis:

f ~ t !5E
0

`

g~l!exp~2lt !dl. ~5!

Analysis of nonexponential transients is aimed at determ
ing the spectral functiong(l). Equation~5! reduces to Eq.
~4! if the spectral functiong(l) can be presented as a sum
n delta functions:

g~l!5(
i 51

n

Aid@l2l i #. ~6!

In addition to the definitions of three types of exponent
decays@Eqs.~3!, ~4!, and~5!#, the experimentally measure
decaysf exp(t) contain a noise componente(t): f exp(t)5f(t)
1e(t).

An example of all three cases, taken from solid st
physics, is given in Fig. 1. The top of the figure represents
energy band diagram of a semiconductor with one@Fig.
1~a!#, three @Fig. 1~b!# and multiple@Fig. 1~c!# trap levels.
These traps can capture electrons and then emit them ba
the conduction band. The emission process is described
exponentials with the time constants, depending on the t
perature and the energy position of the traps in the band
The case of a single trap level corresponds to a monoex
nential decay. The spectral functiong(l), which determines
the amplitude of exponential decay with the emission r
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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1235Rev. Sci. Instrum., Vol. 70, No. 2, February 1999 A. A. Istratov and O. F. Vyvenko
l0 , is presented in Fig. 1~d! and is equal to zero everywher
except forl5l0 . The case of three trap levels results
decays, which consist of a sum of three exponentials. In
case the spectral functiong(l) is represented by three del
function-like spikes, as in Fig. 1~e!. Finally, the case of a
distribution of noninteracting trap levels is described by
smooth continuous spectral functiong(l) in Fig. 1~f!. It is
assumed that the functiong(l) takes nonzero values ove
the interval@a0 ,b0# and is zero for the emission rates ou
side of this interval. In the following we will call this interva
a domain of the functiong(l).

III. FUNDAMENTAL LIMITATIONS OF THE
EXPONENTIAL ANALYSIS

The problem of exponential analysis is solved, in pr
ciple, by taking the inverse Laplace transform of the tra
sient f (t) ~Ref. 38!:

g~l!5
1

2p i Ec2 i`

c1 i`

f ~ t !exp~lt !dt, ~7!

wherec is a real constant. It is usually quite straightforwa
to compute the integral Eq.~7! if the analytical expression
for f (t) is known. This, however, seldom happens in expe
mental physics. In most cases, Eq.~7! ~also known as a Bro-
mwich integral! cannot be applied directly to experiment
data. Unlike sinusoids, exponentials are not orthogonal al
the real axis, i.e., the contribution of each exponential to
signal cannot be projected out by taking an inner prod
defined as an integral along the real axis. This is reflected
the fact that Eq.~7! requires integration in the comple
plane. Yet, from experimental observations, only values
the signal function along the real axis are known. Thus,

FIG. 1. A band diagram of a semiconductor with a single deep level~a!,
three deep levels~b! and a continuous energy distribution of levels of no
interacting defects~c!, and corresponding to these three cases emission
spectra of the decays: monoexponential decay~d!, multiexponential decay
~e! and nonexponential decay~f!.
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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spectral functiong(l) can be found only by solving the
Laplace integral equation, Eq.~5!. This equation belongs to a
more general class of Fredholm integral equations of the
kind, which are known to be ill posed39,40 ~or ‘‘incorrectly’’
or ‘‘improperly’’ posed!. This term means that the solution
g(l), of Eq. ~5! may not be unique, may not exist, and m
not depend continuously on the data.

The ill-posed nature of the Laplace integral equation c
be easily understood41 if we take a Fourier transform of both
sides of Eq.~5!. The equation becomes:

f̂ ~v!5K̂~v!3ĝ~v!. ~8!

Here, f̂ (v), K̂(v), andĝ(v) are the Fourier transform
of f (t), K(t,l) andg(l), respectively. It can be shown42,43

that the Fourier ‘‘image’’ of the Laplace kernelK(t,l)
5exp(2lt) is band limited, i.e.,K̂(v) decreases to zero a
1/(v21l2) for v→`. The Laplace operator can thus b
compared with a low-pass filter in electronics. Using th
analogy, one can say that the high-frequency componen
the Fourier spectrum:ĝ(v) of g(l), are cut off by the band-
limited Laplace integral operator ifv.vmax, wherevmax is
a certain threshold frequency. For instance, ifĝ(0)(v) is such
a function thatĝ(0)(v)50 for uvu,vmax, but ĝ(0)(v)Þ0
for uvu.vmax ~for example, g(0) may represent high-
frequency noise!, thenK̂(v)3ĝ(0)(v)50. If a solutionĝ of
Eq. ~8! exists, thenĝ1ĝ(0) is also a solution, and thus th
solution of the Laplace equation is not unique. This resul
essentially the subject of the Riemann–Lebesgue theor
well known from mathematics.44,45 Since the Laplace kerne
K acts as a smoothing operator which filters out hig
frequency components of the functiong(l), then any at-
tempt to recover these components from a noisy trans
f exp(t) will lead to arbitrary deviations ofg(l). Many physi-
cists have discovered after much wasted effort that it is
sential to understand the ill-conditioned nature of the pr
lem before attempting to compute solutions. Examples wh
show how significantly two solutionsg1 and g2 may differ

FIG. 2. The famous example of Lanczos~Ref. 30!. Twenty four data points
~filled circles! are fitted by a double exponentialf 2(t)52.202 exp(24.45t)
10.305 exp(21.58t) ~dashed line! and by a triple exponentialf 3(t)
50.0951 exp(2t)10.8607 exp(23t) and 1.5576 exp(25t) ~solid line!. The
difference betweenf 2(t) and f 3(t) is less than the line width, and the line
are undistinguishable. Following Ref. 30, the units of time are hours.

te
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were provided by Lanczos,30 Julius46 and Grinvald.47

Lanczos30 showed that a sum of two exponentials could
reproduced to within two decimal places by a sum of th
exponentials with entirely different time constants and a
plitudes. The example of Lanczos is reproduced in Fig
where the experimental data~circles! and double- and triple-
exponential fits~lines! are plotted. Although the plot contain
two lines, they are undistinguishable since the difference
tween them is less than the linewidth. In numerical fits,
siduals~the difference between the experimental data and
fit! are often used to evaluate the quality of the fit. Syste
atic deviation of the residuals from zero is considered as
indication of a poor choice of the fitting function. The resid
als for the double- and the triple-exponential fits from Fig
are presented in Fig. 3. Analysis of Fig. 3 shows that
residual plots for the double and triple exponentials lo
very similar and are not very helpful in deciding which fit
better.

It is natural to ask why the residual plot does not sh
any substantial difference between the two fits, although
number of exponential components and their decay rates
fer quite significantly. The answer is that it is the cons
quence of nonorthogonality of exponentials. The variation
the weighted sum of squares of the residuals due to a ch
in the value of one parameter can be compensated to a
siderable extent by adjusting the other parameters. The la
the number of parameters to be determined, the more se
this problem becomes. It is very important to realize that t
last property is determined by the Laplace kernelK and is
true also for noise-free decaysf (t).

Since the functionf exp(t) is measured experimentally
i.e., it contains noise and thus is not known accurately, t
by solving the Laplace integral equation we get a family` of
functionsg(l), which satisfy with prescribed degree of err
the equationL@`#> f exp(t), whereL is the Laplace operator
The problem is then to pick the true solutiong0(l) out of the
family `.

Fortunately, in many cases we have some prior inform
tion about the functiong0(l). This helps us to extract from
the set of possible solutions a solution which has a phys
meaning. The procedure of selecting a single solution fro

FIG. 3. Residuals~differences between the data points and the fit! calculated
using the data and the fitting functions from the example of Lanczos~Ref.
30, Fig. 2!.
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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set of possible ones is known asregularizationof the inte-
gral equation. To regularize the equation, the invers
method must accommodate existing prior information. F
example, a constraintg(l).0 is very powerful for eliminat-
ing oscillating solutions. Another very important principle
the principle of parsimony which states that, of all possib
solutions that have not been eliminated by prior knowled
you must choose the simplest one, i.e., the one that rev
the least amount of detail or information that has not be
already known or expected. While this solution may not ha
all the details of the true solution, the details which it has
necessary to fit the data and therefore less likely to be
artifact.48 Usually, it is assumed that the ‘‘simplest’’ solutio
g0(l) is the smoothest one. The smoothness of a func
can be measured, for example, as an integral of its sec
derivative~Ref. 49! or as the amplitude of its high-frequenc
Fourier components. Another approach which can be use
find the solution to an ill-posed problem is the assumpt
that the solution has a predetermined form, for example,
it is a sum ofn discrete exponential components@Eq. ~4!#.
Such a solution is known as aquasisolutionin the sense of
Ivanov.50

IV. THE RESOLUTION LIMIT OF EXPONENTIAL
ANALYSIS

The problem of solving a Fredholm equation of the fi
kind @Eq. ~5!# is not unique to exponential analysis. In muc
of experimental science, the data delivered by an experim
tal system are related to the phenomena under investiga
by a linear integral transformation. The analysis of such s
tems has given rise to a well developed theory of ‘‘reso
tion’’ or ‘‘information,’’ associated with the names o
Nyquist51,52and Shannon.53,54One finds that, in the presenc
of noise, the details of the ‘‘object’’g(l) can only be recov-
ered from the ‘‘image’’f (t) up to a certain resolution limit.
This limit is characterized by the Shannon or Nyquist nu
ber, or Rayleigh criterion, and is determined by properties
the eigenvalue spectrum of the transformationg→ f . The
eigenvaluesgn and eigenfunctionsfn are widely used in the
theory of integral equations~see, e.g., Ref. 55!. In informa-
tion theory eigenfunctions are considered as basic elem
of information which retain their identity under the action
the integral operator, but are scaled in magnitude by the
genvaluesgn :

E
a

b

K~x,y!fn~y!dy5gnfn~x!. ~9!

A very important property of the eigenfunctionsfn is that
they form an orthogonal basis, and both the data funct
f (t) and the solutiong(l) can be represented as eigenfun
tion expansions:

f ~ t !5 (
k51

`

f kfk~ t !, g~l!5 (
k51

`

gkfk~l!. ~10!

Substituting Eq.~10! into the integral equation Eq.~5!, then
using Eq.~9! and the orthogonality of eigenfunctionsfk ,
one can show that
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions



g

en
a
is
w

th

be

e
r-

t t
la
xa
t
e

o
in-

-
fie
er
e
s
iz
y

s

e

c

ie
he
th
e

th

g
th
a-
on
u

be-
xpo-

by

e
a-

ther

de-
l
c-
n
it

ac-
n

in
nd

al-
of

x-
do-

.,
ine
cal-
od
he
be

ant
on
he
not

l-
tion

1237Rev. Sci. Instrum., Vol. 70, No. 2, February 1999 A. A. Istratov and O. F. Vyvenko
g~l!5 (
k51

`
f k

gk
fk~l!, ~11!

where it is assumed that thegk are arranged in descendin
order g1.g2.g3 ... . The largergk is, the more efficient
the transmission of the corresponding information elem
fk is through the integral. Elements corresponding to sm
gk are transmitted so weakly that they become lost in no
and cannot be determined accurately. Unfortunately, as
be discussed below, the sequence of eigenvaluesgk of the
Laplace transform decreases to zero very quickly. Since
high-frequency noise components in the data,f exp(t), pre-
vent f k in Eq. ~11! from decreasing as fast asgk , the ratio
f k /gk diverges rapidly for largek. Thus, the calculations
will eventually become noise limited and the series, Eq.~11!,
must be terminated. The functiong(l) restored in such a
way will contain the most information that can safely
recovered from the experimental dataf exp(t). The faster the
sequence ofgk decays to any given noise level, the soon
the series, Eq.~11!, should be terminated, and the less info
mation can be extracted from the raw data. It is importan
realize that since the sequence of eigenvalues of the Lap
transform decays to zero, one can never obtain the e
solution to Eq.~5!.56 An infinite amount of information abou
the solutiong(l) is in principal not recoverable from th
measured transientsf exp(t).

The Fredholm equation with a Laplace kernel did n
receive detailed consideration from the point of view of
formation theory until the article by Petrovet al.57 In follow-
ing articles, McWhirteret al.56 and Pike et al.,58 Bertero
et al.59–65 and Ostrowskyet al.66 calculated the eigenfunc
tions and eigenvalues of the Laplace transform and identi
the resolution elements of exponential analysis. Bert
et al.60 defined the number of degrees of freedom, or gen
alized Shannon numberM as the number of singular value
that are greater than the SNR. The larger this general
Shannon number is, the greater is the information capacit
the integral transform. McWhirteret al.59 showed that the
sequence of eigenvalues of the Laplace transform decay
quickly that in most cases only 4–9 eigenvalues of Eq.~5!
are greater than a realistic SNR. For comparison, the eig
value spectrum of the Fourier transform never decays
zero,56 which means that the Fourier transform has a mu
greater information capacity than the Laplace transform.

An important conclusion made by Ostrowskyet al.66 is
that the so-called sampling theorem known from Four
analysis54,67can be applied to the problem of inversion of t
Laplace transform. The sampling theorem states that
wave form is completely determined by its values at tim
intervals 1/2vmax, where vmax is the highest frequency
present in its spectrum. Consequently, if the spectrum of
function f (t) is band limited by the frequencyvmax, then all
available information in the spectrum off (t) will be suffi-
cient to restoref (t) only in 1/2vmax data points equidistantly
spaced int. Ostrowskyet al.66 have shown that the samplin
theorem applied to exponential analysis requires that
‘‘source’’ g(l) be determined at equidistant points in log
rithm of the emission rate, since the zeros of eigenfuncti
of the Laplace transform are distributed approximately eq
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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distantly on a logarithmic scale. The closest distance
tween exponential decay rates that can be resolved in e
nential analysis in the case of an infinite domain ofg(l) is
given by:59

d5l i /l i 115exp~p/vmax!, ~12!

wherevmax is determined by the SNR in the transients:

cosh~pvmax!5p~SNR!2. ~13!

Equations~12! and~13! determine the resolution limit of the
exponential analysis. Attempts to increase the resolution
trying to determineg(l) at points closer thanl i /l i 11

5exp(p/vmax) are bound to yield unreliable results.56,66

It is important to note that prior knowledge about th
domain of the solution partly compensates for the inform
tion lost in noisy decays, and can be used to achieve a fur
increase in resolution.66 In Ref. 59 it was shown that the
singular value spectrum of the Laplace integral operator
creases slower to zero ifg(l) is defined on a finite interva
@a0 ,b0# @see Fig. 1~f!# as compared to the eigenvalue spe
trum of a problem whereg(l) is assumed to be defined o
an infinite domain. With application to optics, this made
possible to obtain a resolution beyond the classical diffr
tion limit.68 In the case of a limited domain of the functio
g(l), the resolution limit is determined by the numberM of
singular values which exceed the SNR:

d5t i /t i 115S b0

a0
D 1/M

. ~14!

The resolution limit for infinite and finite domains is given
Table I and presented in Fig. 4. The values in Table I a
Fig. 4 follow from Eqs.~12!–~14! and were obtained by
Berteroet al.,59 who calculated eigenfunctions and eigenv
ues of the Laplace integral operator for different domains
the functiong(l). Figure 4 shows that the resolution of e
ponential analysis can be substantially improved if the
main of the solution is known. If the domain ofg(l) is not
known a priori, one can use a ‘‘zooming’’ technique, i.e
begin with the assumption of an infinite domain, determ
where the solution is localized, and then make another
culation for the estimated finite domain. Another meth
would be to estimate the localization of the solution from t
knowledge of its first and second moments, which can
derived from the data before inversion.69

Summarizing this section, we came to the very import
conclusion that there is a limit to the maximum resoluti
capacity of exponential analysis. This limit is inherent in t
problem itself and is exacerbated by noise. This limit can

TABLE I. The resolution limit of exponential analysis for different signa
to-noise ratios in the input transients and for different domain of the solu
g(l) ~after Berteroet al., Ref. 59!.

Signal-to-noise ratio
in transientf (t)

Domain ofg(l), lmax/lmin

Infinite 5 2

102 2.44 1.74 1.44
103 1.88 1.45 1.27
104 1.63 1.32 1.20
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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be surmounted by numerical algorithms. Any attempt to
tain resolution beyond the resolution limit will result in un
reliable and unstable solutions.

V. DATA ACQUISITION FOR HIGH-RESOLUTION
EXPONENTIAL ANALYSIS

A. Digitalization and averaging of transients

The major goal of exponential analysis is to distingu
exponential components with close time constants in the
perimentally measured decay. To achieve high resolutio
exponential analysis, it is very important to record the tra
sient until it decays completely.70–72 Since the ratio of
amplitudes of two exponentials with close decay rat
exp(2l1t) and exp(2l2t) increases with the time a
exp@(l22l1)t#, then these exponentials always can, at le
theoretically, be distinguished if the decay is monitored fo
sufficiently long time. Since the exponential is a decay
function of time, the transient should be monitored as long
the signal amplitude exceeds the noise level. For a signa
noise ratio, SNR5100, the measurement timeT should be at
least 4.6t @since exp(4.6)'100#, for SNR51000 about 6.9t,
and for SNR5104 at least 9.2t. A too short durationT may
become an important limiting factor for the resolution cap
ity. This is frequently ignored in experiments and numeri
simulations. A number of examples confirming that the re
lution of exponential analysis can be improved by increas
T/t can be found in the literature. For instance, Smithet al.73

analyzed the Gardner transform technique~described in Sec
VI C 4! and came to the conclusion that the best resolutio
the recovered emission rate spectrum could be obtained

FIG. 4. The resolution limit of exponential analysisd as a function of the
domain of the solutionb0 /a0 and of the signal-to-noise ratio~SNR! ~after
Berteroet al., Ref. 59!. Solid lines represent dependencies of the resolut
limit on domain width for different signal-to-noise ratios. The dash-dot lin
give the resolution necessary to recovern52,3,4,5 exponentials as a func
tion of the domain;n exponential components can be resolved for a giv
SNR and domainb0 /a0 , when the dash-dotted line corresponding ton is
below the solid line associated with SNR for the abscissa value ofb0 /a0 .
The horizontal dashed lines represent resolution limit for different SNR
the infinite domain.
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if the decay is known for at least 22t. Hall et al.74 compared
the method of moments and the nonlinear least squares m
mization and reported that the error in determination ot
decreased with the increase of measurement time
reached its minimum atT/t in the range 10–16. Zhang
et al.75 reported that for a monoexponential transient w
unknown baseline both the Prony~Sec. VI B 3! and
Levenberg–Marquardt~Sec. VI B 2! algorithms requireT
.5t for best performance.

To provide an example of the importance of monitori
the decays for the time periods which substantially exc
the decay time constants, we calculated the double-
triple-exponential decays from the example of Lanczo30

~Sec. III! for the decay time of 6 h instead of 1.2 h as in Figs
1 and 2. This corresponds to the increase of theT/t ratio for
the slowest component of the decay from 1.2 to 6. It is
structive to see in Fig. 5 how two decays, undistinguisha
for t,2 h, become well separated after 3 h. However,
difference between the two curves does not exceed 0.00
the decay amplitude, and hence can be detected only if
SNR in the experimental data exceeds 1000.

As discussed above, SNR in the input decays is a m
factor that limits the resolution of exponential analysis. U
fortunately, SNR of the decays obtained from the experim
is usually determined by sensitivity of the equipment a
often does not exceed 100. For example, interfering ra
frequencies, instabilities of pulse generators and dc volt
sources, noise of current and voltage amplifiers, drift of te
perature, or in optical spectroscopy fluctuations of lamp
tensities, photomultiplier color effects, or light scatterin
will all degrade the SNR. The above mentioned value
SNR5100 is still too low for most of algorithms discusse
in Sec. VI, and is clearly insufficient to distinguish th
curves in Fig. 5. Averaging a large number of transients
ables one to improve the SNR by a factor of aboutK1/2,
whereK is the number of averaged transients~this estimate
assumes Poisson statistics!. Since it is usually too time con
suming to average more than about 104 transients, it is easy
to calculate that after averaging one can obtain a SNR u

n

r

FIG. 5. The example of Lanczos~Ref. 30! plotted for longer decay times
than in Fig. 2. It is obvious that the two curves, which are indeed undis
guishable att,2 h, are well separated fort.3 h. However, the absolute
value of the separation is less than only 0.001 of the decay amplitude.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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104 for SNR without averaging of 100. According to Table
this SNR would enable one to obtain the resolution as h
as t1 /t2'1.63. Such a resolution was indeed obtained
practice~see Ref. 72, for an example!. However, one should
keep in mind that it is necessary to avoid any fluctuatio
and drifts of the components of experimental setup dur
accumulation of transients. The averaged transients ca
substantially distorted by instabilities of gain or a dc offset
amplifiers, by drifts of voltage and current sources or pu
generators, instabilities of temperature or lamp intensity,
pecially for long measurements. Although the amplitude
high-frequency noise components will decrease with incre
ing accumulation, the accuracy of the measured decay
actually start to decrease after a certain critical accumula
time is exceeded. For example, according to Dobaczews76

the maximum averaging time of capacitance transients
high-resolution DLTS, which is tolerable to the drifts in th
equipment, is about 10 min. This value may indeed dep
upon the experimental equipment and the skill of the exp
menter and may vary for different areas of science. It sho
be emphasized that the drifts which may change the de
time constant are particularly detrimental for exponen
analysis since the average of several exponentials with
ferent time constants is not a monoexponential decay.
illustrate this point, in Fig. 6 we present results of a simu
tion of averaging of a sequence of exponential decays w
the decay rate changing gradually from unity to four. Dott
lines correspond to the fastest and the slowest decays o
set. The solid line is the averaged curve. Obviously, the
cumulated decay is no longer monoexponential and does
properly represent the physical phenomenon which cau
the decay.

An important part of an automated data acquisition s
tem is an analog-to-digital converter~ADC!. Important pa-
rameters of the ADC are its linearity and time stability. Fu
thermore, an ADC may introduce additional discretizati
noise77 with an amplitude that can be roughly estimated
the sensitivity of the lowest bit of the ADC~i.e., as a change
in the input voltage which changes readings of the AD
from N to N11!. It is very important for high-resolution

FIG. 6. Simulated transient obtained by averaging exponential decays
decay rate gradually changing from one to four~solid line!. The dotted lines
represent the fastest and the slowest components of the decay.
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exponential analysis that the amplitude of the input sig
covers the full dynamic range of the ADC. This can be us
ally achieved by adjusting the sensitivity of the ADC~most
modern data acquisition boards have input amplifiers w
adjustable gain; if an on-board amplifier is not available,
external voltage amplifier can be used!. If the amplitude of
the transient is, e.g., only a hundred times larger than
lowest bit of the ADC, then the signal-to-noise ratio in th
digitized transient will never exceed a level of about 10
Only 16-bit or, in the worst case, 12-bit ADCs are suitab
for high-resolution exponential analysis. Figure 7 is an e
ample of digitalization noise. In this figure, we simulate
digitalization of an exponential transient with the amplitu
of 20 meV using a 16-bit ADC with the sensitivity selecte
in such a way that the input voltage range is from 0 to
meV, 320 meV, and 5.12 V. The input signal is then spann
over the range corresponding to 16, 12, and 8 bits of
ADC. Steps on the curves in Fig. 7 correspond to the dig
lization noise, which is fairly low if all 16 bits of the ADC
are used, but becomes almost as high as 1% of the d
amplitude if the dc input voltage range is set much high
than the signal amplitude.

Another question that arises in experiments is how ma
experimental points in a transient should be measured f
high-resolution analysis. As was discussed in Sec. IV,
Laplace transform is band limited and it is only possible
derive a finite amount of information on the functiong(l)
from the data. The minimum number of data points nec
sary to determineg(l) for a given SNR is determined by th
number of degrees of freedom of the solution, which in t
case of inverse Laplace transform seldom exceeds 10~see
Sec. IV!. This means that in most cases only 10–20 poi
would be sufficient. However, these points should be o
mally ~equidistantly in logarithmical scale! sampled.66 Bert-
ero et al.60 showed that in the case of a limited doma
@a0 ,b0# of g(l), b0 /a0<8, the ill conditioning of the res-
toration of 2–4 exponential components with 5 optima
placed data points is less than with 32 linearly spaced d
samples.

Experience with well-posed problems tells us that t

ithFIG. 7. A simulated exponential decay after digitalization using 8, 12, a
16 bit of the ADC. Steps on the curves are associated with digitaliza
noise.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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more data points are measured on the curve, the more a
rately it can be fitted. In exponential analysis one should t
into account that an excess of data points makes the in
sion problem less stable. The procedure of digitalization
the exponential decay is a kind of low-pass filter. In agr
ment with the Shannon sampling theorem,54 only the oscil-
latory components with a frequency lower than half of t
digitalization frequency are transferred. If we increase
sampling rate, we increase the content of noise-related h
frequency Fourier components in the spectrum of the m
sured transient. Since useful information can be extrac
only from the several lowest-frequency Fourier compone
of the exponential decay that are greater than the noise
additional noise-related high frequency components m
the problem more ill posed.60,78 Most regularization tech-
niques discussed in the second part of this review art
enable the user to find a stable solution even for a very la
number of data points. However, one should realize that
timately the increasing number of data points results in
increase of computational time without any improvement
resolution.

There is, however, another aspect of the same prob
As a rule, ADCs sample the transient at equidistant point
time. Since the sampling interval should be at least sev
times shorter than the time constant of the fastest compo
of the exponential decay, then for a spectroscopic anal
covering several orders of magnitude int, one has to mea
sure from several thousands to several hundreds of thous
of points. In this case, one has to deal with very large d
files. To reduce the number of data points in the analy
several authors suggested pseudologarithmic storage79 or
data acquisition80 algorithms.

B. Extraction of the baseline offset

Determination and extraction of the baseline offset,B in
Eq. ~2!, is an important problem of exponential analysis81

As it will be discussed in Sec. VI, most algorithms cann
accommodate the baseline offset as a parameter and re
that it be extracted before the analysis. The existing meth
of baseline offset subtraction are based on an assumption
even in the case of a multiexponential transient the tail of
decay can be approximated by a single exponential of
form:

f 0~ t !5A exp~2l0t !1B. ~15!

Kirchneret al.82 and Ikossi-Anastasiouet al.83 suggested us
ing the Fourier transform to determine the parametersA, B
andl0 . The formulas used in their method are described
detail in Sec. VI A 1.

Mooreet al.84 and Smithet al.85 suggested two algebrai
methods. In the method of Mooreet al.84 the value of the
baseline offsetB is treated as a parameter to be adjusted
minimize the variance of the distribution ofnk determined as

nk5$ ln@ f ~ tk!2B#2 ln@ f ~ tk1N/2!2B#%/~ tk2tk1N/2!.
~16!

The value ofk varies in Eq.~16! from 1 to N/2, whereN is
the number of experimental points.
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Smith et al.85 proposed to determine the baseline usi
three data points. If:

Y15A0 exp~2t0 /t!1B,

Y25A0 exp@2~ t01t1!/t#1B, ~17!

Y35A0 exp@2~ t012t1!/t#1B

then

B5~Y1Y32Y2
2!/~Y11Y322Y2!. ~18!

Alternatively, the decay can be differentiated to remove
baseline.70,86 This can be done by taking the differences b
tween the values of the signal at successive points and
rying out an exponential analysis of these differences inst
of the original decay.87 Mangelsdorf88 and Perl89 suggested
substituting differentiation by plottingf (t1Dt) againstf (t)
with constantDt throughout. The main disadvantage of the
two methods is that they emphasize high-frequency no
Better results may be obtained by employing advanced
ferentiation algorithms. For example, one can consider
differentiation as an ill-posed problem90,91 and apply
Tikhonov regularization~see Sec. VI C 4!, or make a spline
interpolation of the data and then differentiate the result.92,93

Finally, Isenberget al.94 and Kirchneret al.82 proposed
using exponential depression to suppress the baseline. In
method, the input transient is multiplied by a decaying exp
nential exp(2ldt). The extracted amplitudes are unchang
and the emission ratesl i are related to the extractedl i

through a simple relationl i5l i2ld . However, this treat-
ment was regarded by Gardneret al.95 as ‘‘a drastic and
unrecommended step.’’

C. Smoothing of transients

The amplitude of high-frequency noise in the transie
which makes the problem of exponential analysis less sta
can be decreased by smoothing the transients. It is impor
that the smoothing algorithm should not introduce distortio
into the component time constants. There are essentially
methods which were developed for the smoothing of ex
nential decays.

The method developed by Dyson and Isenberg,96 also
known as mean displaced ratio~MDR! method, is based on
the assumption that the observed decay is a sum of an
known number of discrete exponentials. The original fun
tion f (t) is replaced by a new functionY(q) that has the
same time constants as the original curve, but a much
proved SNR. For continuous data,Y(q) is defined as

Y~q!5
1

T2Q E
0

T2Q

@ f ~ t1q!/ f ~ t !#dt, ~19!

where 0<q,Q andQ,T, whereT is the upper limit oft
and Q is a positive constant that determines the degree
smoothing. Note that while the original observations are c
lected betweent50 and t5T, the smoothed data cover
somewhat smaller range, fromq50 to q5Q.

When the experimental situation yieldsN11 discrete
observations, made at equal increments of timeDt so that
t i5 iDt, the mean displaced ratio is defined as
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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Yk5
1

N2L11 (
i 50

N2L
f i 1k

f i
, ~20!

where k50,1,...,L. The degree of smoothing is controlle
by the choice ofL, with increased smoothing achieved b
decreasing theL value. Ikossi-Anastasiouet al.83 and Dyson
et al.96 found that for the data with 5%–10% noise,L
50.9N is a good choice.

If the original observations can be represented as

f ~ t !5(
j 51

n

Aj exp~2t/t j !, ~21!

then, as it is easy to obtain from Eqs.~20! and ~21!, the
output curve has the form

Y~q!5(
j 51

n

b j exp~2q/t j !, ~22!

where

b i5
Aj

N2L11 (
j 51

n

exp~2t i /t j !/ f i ~23!

and

Y05(
i 51

n

b i51. ~24!

Dyson et al.96 noted that the advantages of the MDR a
twofold: not only does it reduce random deviations from t
true decay without the risk of introducing systematic erro
but it also eliminates one unknown by exactly defining t
sum of the amplitudesb i @Eq. ~24!#. It was also noted83 that
it is important to extract the baseline offset~Sec. V B! prior
to implementing the MDR smoothing.

Provencher97,98 suggested another smoothing algorithm

Y~ tk!5 (
m51

L

f ~ tm! f ~ tm1tk2t1!Y (
m51

L

f 2~ tm!, ~25!

where k51,2,...,j , j 5N2L11, and N is the number of
data points. The output signal is given by Eq.~22!, where the
coefficientsb i are expressed as

b j5Aj (
m51

L

f ~ tm!exp~2l j tm!Y (
m51

L

f 2~ tm!. ~26!

However, since this algorithm uses a product rather tha
ratio of the data points, it does not uniquely define the sum
the amplitudes, and therefore does not reduce the numb
unknown parameters as the mean displaced ratio does.

Windowing filtering techniques, which are based on
convolution of the transient with a function with a ban
limited Fourier image99,100 can affect the exponential natur
of the data, unless the signal is filtered after it is reverse
time.101 The problem of detection and removal of impul
distortions of the experimental data was intensively d
cussed in the literature on digital image processing~see, e.g.,
Refs. 102–105!.
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VI. NUMERICAL PROCEDURES FOR EVALUATION
OF TRANSIENTS

The first part of this review article discussed the qu
tion, ‘‘why it is hard to analyze the transients,’’ ‘‘how th
resolution of the exponential analysis can be improved
using the correct procedure of data acquisition.’’ Yet, so
we have not discussed actual algorithms for extracting de
rates and amplitudes from the transients. In this section,
present a summary of major numerical algorithms used
exponential analysis in applied physics. This section is
tended for physicists who wish to gain a deeper understa
ing of the techniques of exponential analysis. First-time re
ers who are interested in general features of exponen
analysis rather than in details of the algorithms are advise
skip this section and continue reading from Sec. VII. T
goal of this section is to classify the methods of exponen
analysis, discuss their essential features, and give s
guidelines to choose the most suitable for a given task a
rithm. This review article is not intended to be a comple
guide for programming of the discussed methods, and d
not necessarily describe all mathematical aspects of the
gorithms. This particularly applies to the most sophistica
methods, discussed in Sec. VI C. The reader interested in
details of correspondent algorithms should refer to the or
nal articles cited in the text. Furthermore, we want to emp
size~and will return to this point later in the discussion! that
the program code for a number of most of the complica
algorithms discussed in Sec. VI C is readily available fro
program libraries, and we strongly encourage readers to
the existing code rather than to write their own.

The structure of this section is as follows. Following th
classification introduced in Sec. II, we divided the metho
for exponential analysis into three large groups: monoex
nential analyses based on the assumption that the decay
sists of a single exponential; multiexponential analys
which assume that decays consist of a sum of several~from 2
to 4! exponentials; and spectroscopic methods of exponen
analysis, which do not make any assumptions about the
cay rate spectrum and can be applied to both discrete e
nentials and continuous distributions of emission rates.

The algorithms for the solution of the Laplace integr
equation are derived assuming that both the exponential
cay f (t) and the spectral functiong(l) are analytical func-
tions. Some authors prefer to emphasize the discrete na
of the problem and formulate the Laplace equation in
matrix form f5Kg. In this equationf andg are data vectors
and K is the matrix, which represents the Laplace integ
operator. The algorithms are essentially the same for b
matrix and analytical representations. Overviews and co
parative analysis of major matrix-based methods can
found in Hansen106–108or Varah.109 The matrix methods are
often faster, at least if the matrices are not too large. Mo
over, the matrixK21 has to be regularized and calculate
only once and can thereafter be repeatedly used for eva
tion of different transients with the same SNR. The analy
cal methods do not have this advantage, but they w
equally well with both small and very large amounts of da
and, from our point of view, are easier to explain. Therefo
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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our discussion will be confined to the analytical versions
the algorithms.

To avoid possible confusion, we want to emphasize t
the methods are grouped according to the capabilities of
methods rather than according to the type of the transi
The methods of monoexponential analysis discussed in
VI A can be applied to only monoexponential transien
However,monoexponential transientscan be evaluated usin
any one of the discussed methods, including those from S
VI B and VI C. If the task of the reader is to analyze a m
noexponential transient, we would also strongly recomm
reading Sec. VI B on methods for multiexponential analys

A. Methods for monoexponential analysis

1. Fourier transform of the transients

The Fourier transform maps the exponential relaxat
into a function of frequency according to the equati
F(v)5I@A exp(2l0t)1B#, whereI is the Fourier transform
operator. A very useful property of the Fourier transform
an exponential decay is that for any nonzero angular
quencyv, the ratio of the real and the imaginary compone
of F(v) yields the quantity2l0 /v independently of the
baseline offsetB or amplitudeA ~Ref. 82!:

l052v Re@F~v!#/Im@F~v!#. ~27!

Although the decay constantl0 can be determined from Eq
~27! for any frequencyv, usually only the lowest frequencie
are used.110–113After l0 is calculated, the amplitude of th
decayA and the baselineB can be easily calculated:

A5
~v21l0

2!

l0
3

Re@F~v!#Dt

12exp~2l0tm!
, ~28!

B5F~0!/N2~A0 /l0tm!@12exp~2l0tm!#, ~29!

where v is any nonzero Fourier component given
2pn/tm , and Dt5tm /N. Here, tm is the time of the last
observation, andN is the number of data points in Fourie
transform. An important feature of this method is that it
noniterative, and hence is very fast. The method gives g
results even if the noise level is as high as 10%.82,83 The
important advantage of this method is that it can be reali
on a computer~using the fast Fourier transform algorithm! or
using electronic spectrum analyzers. Another advantag
the method is that it determines the baseline offset~which as
we will show below only few methods can do! and thus does
not require that the baseline be subtracted before the me
is applied to a transient.

2. Algebraic methods

Devries and Khan114,115proposed the ‘‘divisor method’’
based on the formula of Mooreet al.84 Assuming that the
baseline offset is extracted~Sec. V B!, it is easy to obtain
from the expressionf (t i)5A exp(2ti /t) for i 51,2 the value
of the decay time constant

t5~ t22t1!/ ln@ f ~ t1!/ f ~ t2!#. ~30!

The necessity of subtracting of the offset can be easily o
come by measuring three values off (t) instead of two:116,117
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lnS f ~ t2!2 f ~ t1!

f ~ t3!2 f ~ t2! D , ~31!

whereDt5t22t15t32t2 . Mukoyama118 and later Zubkov
et al.119 and Kim et al.120 proposed a four-point formula:

t5~ t32t1!3 lnS C~ t2!2C~ t1!

C~ t4!2C~ t3! D , ~32!

wheret22t15t42t3 . Note that Eq.~32! reduces to Eq.~31!,
if t25t3 . A disadvantage of these algebraic methods as c
pared to the Fourier transform method~Sec. VI A 1! is that it
uses only 2 to 4 data points to compute the time consta
and thus is more sensitive to deviations of data points du
noise. Another drawback of the methods from this subsec
is that they cannot be used to determine the amplitude of
decay and are not tolerant of nonzero baseline offsets.

B. Methods for multiexponential analysis

1. Graphical analysis technique (peeling method)

The graphical analysis technique~also known as the
peeling method! was widely used in the 1960s, when deskt
computers were not available. If the componentsl i of the
multiexponential decay are not too close to each other, t
the transientf (t) for large values oft can be approximated
by the slowest component, i.e.,

ln@ f ~ t !#5 lnS (
i 51

n

Ai exp~2l i t !D
' ln@An exp~lnt !#[ ln~An!2lnt. ~33!

Obviously, An and ln can be determined, plotting th
transient f (t) in a semilog scale and fitting its tail with
straight line. Then, the slowest componentAn exp(2lnt) is
subtracted from the transientf (t) and the procedure is re
peated to determine the parameters of the second slo
component, etc. According to Van Liew,121,122 up to three
exponentials can be extracted by this method. The pee
method requires that the baseline offset be extracted be
Eq. ~33! is applied to the transient.

With the development of computers, graphical analy
methods transformed into nonlinear least squares fit
routines123 discussed in Sec. VI B 2.

2. Nonlinear least squares analysis

The nonlinear least squares~NLS! analysis consists in
minimization of the functional

x2~p!5(
j 51

N

@ f exp~ t j !2 f 0~ t j ,p!#2,

~34!

f 0~ t,p!5(
i 51

n

Ai exp~2l i t !1B

by variation ofJ52n11 parameterspi , the parameters be
ing amplitudesAi , decay ratesl i , and eventually an offse
B, wheren is the assumed number of exponential comp
nents, andN is the number of experimental points. Minim
zation of the value ofx2 is achieved by variation of the
parameterspi . Sometimes, the right-hand side of Eq.~34! is
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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multiplied by weight factors. These weight factors ena
one to emphasize or deemphasize certain data points. H
ever, we will not discuss these weight factors since, to
best of our knowledge, they are seldom used in exponen
analysis.

The search for the solution is an iterative procedu
Each iteration consists of two parts. First, a decision is m
in which direction to proceed in the parameter space,
then it is calculated how far to go in that direction. Modi
cations of the nonlinear least squares method differ mainl
procedures used to determine the direction and the lengt
the steps, and can be classified according to the maxim
order of derivative used in calculations.

The simplest fitting routines do not use derivatives at
For example, the grid search minimizesx2 with respect to
each parameter separately, varying one parameter at a
Each step in this minimization procedure is a single para
eter search, and a quadratic approximation is used to find
minimum ~see Bevington124!. The efficiency of a grid search
can be improved, using conjugate directions methods.125–127

Another nonderivative method is the simple
method.100,128–130

Slope-following methods~also known as gradient searc
methods! evaluate the first derivatives of the error functio
]x2/]pj in order to determine how the parameters should
changed to minimize thex2. All parameterspi are incre-
mented simultaneously, moving the parameter vector a s
distancedp in the direction opposite to that of the gradie
vector¹p:

¹p5(
j 51

J S ]x2~p!

]pj
p̂j D , ~35!

where pj are the parameters andp̂ j indicate unit vectors.
Equation~35! provides only the direction and not the leng
of the parameter incrementdp. The latter is obtained by a
one-dimensional search. This procedure is repeated untx2

converges to a minimum. The other modification of the g
dient search method is the method of conjug
gradients.131–133This method determines the search direct
on each step as a linear combination of gradients on
current and preceding steps.

Methods that use the second-order derivatives calcu
both the direction and the size of a step. Methods that use
second-order derivatives calculate both the direction and
size of a step. To approximate the dependencex2~p! in Eq.
~34! in the Gauss–Newton method the fitting function is e
panded to the first order in a Taylor series:

f ~ t,p1dp!' f 0~ t,p!1(
j 51

J S ] f 0~ t,p!

]pj
dpj D , ~36!

wheref 0(t,p) is the model function Eq.~34! before the step,
and f (t,p1dp) is the function after the step. The Newton
Raphson method uses the Taylors expansion ofx2:

x2~p1dp!'x0
2~p!1(

j 51

J S ]x0
2~p!

]pj
dpj D , ~37!

wherex0
2(p) andx0

2(p1dp) are the values ofx2 before and
after the step.
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The optimum values for the parameter incrementsdpj

are those for which the functionx2 is a minimum in the
parameter space, i.e., for which the derivatives ofx2 with
respect to the parameters are zero. This condition toge
with Eqs. ~36! and ~37! results in a set ofJ simultaneous
linear equations indpj , which can be presented as a matr
equation~see, e.g., Ref. 124!:

bk5(
j 51

J

dpja jk , k51, . . . ,N, ~38!

the curvature matrixa and the gradientb are given for the
Newton–Raphson method by

bk52
1

2

]x0
2~p!

]pk
, a jk5

1

2

]2x0
2~p!

]pj]pk
, ~39!

and for the Gauss–Newton method by

bk52
1

2

]x0
2~p!

]pk
5(

i 51

N

@ f exp~ t i !2 f 0~ t i ,p!#
] f 0~ t i ,p!

]pk
,

a jk5(
i 51

N
1

2

d f0~ t i ,p!

]pj

] f 0~ t i ,p!

]pk
. ~40!

The Gauss–Newton and Newton–Raphson methods
fer mainly in the formulas for calculation of the curvatu
matrix a. The Gauss–Newton method is used more of
because it estimates the second derivatives from the first
rivatives instead of calculating them directly. This grea
simplifies calculations. Several modifications of the Gaus
Newton method were reported that avoid calculations of
derivative at each step by approximating them from the
siduals. These methods are known as quasi-New
methods.134–139 As a rule, the Gauss–Newton or Newton
Raphson methods and their modifications require more c
putations for one step, but converge in a fewer number
steps than gradient or grid search methods and, as a co
quence, have better overall performance. This was show
numerous tests.140–147

The direction and length of each iteration are determin
by the inverse matrixa21. It must be a positive definite
matrix for the iterative process to proceed toward the m
mum. Therefore, Gauss–Newton and Newton–Raph
methods can only be used in a close vicinity of a minimu
Crockettet al.148 and Greenstadt149 have shown that the ratio
of the largest to the smallest eigenvalue ofa21 provides a
measure of the convergence to a solution.~See also the re-
view of Spang.150!

If the starting point of the search is far from the min
mum and the approximation@Eqs. ~36! and ~37!# fails, the
search procedure tends to overshoot the minimum and
verge. In this case, one can use partial stepskDp, with k
,1, instead of the full stepDp specified by the Gauss–
Newton or Newton–Raphson algorithms. This method140,151

is known as ‘‘damped least squares.’’ The optimum value
the ‘‘damping coefficient’’ k can be obtained by using
one-dimensional search procedure.152
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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Another modification of the Gauss–Newton method w
proposed by Levenberg153 and, independently, by
Marquard.144 It consists of replacing the curvature matrixa
by a1gI , whereI is an identity matrix. This method may b
viewed as a compromise between the Gauss–Newton
steepest descent methods. Wheng50, it gives a Gauss–
Newton step. Asg→`, the step direction coincides with th
direction of the gradient, and the value ofg serves as the
‘‘damping’’ coefficient. The usual practice is to adjust th
value of g dynamically from one iteration to the next by
rule which is based on the past behavior of the algorithm.
analytical approach to the choice ofg was proposed by
Goldfeld et al.154

An important advantage of the Levenberg–Marqua
method is that even if the matrixa is singular, the matrix
a1gI is nonsingular wheneverg.0 and can be made we
conditioned by choosingg to be sufficiently large. This is a
very useful property for the fitting of exponentials becaus
the time constants of two decays become close, the matra
becomes nearly singular.

A comprehensive treatment of the Gauss–Newt
Newton–Raphson and Levenberg–Marquard algorithms
listings of computer programs can be found in Bevington124

and in Presset al.100 Worsley and Lax155 and Flanagan
et al.152 applied the Gauss–Newton method to a linear co
bination of exponentials and analyzed its accuracy. The
termination of the standard deviation of parameters in
nonlinear least squares method was discussed by Burre156

and Swarte.157 Further modifications to improve convergen
of the Gauss-like methods were proposed by Deuflh
et al.,158 Neri et al.,159 Lybanon,160,161 Dennis et al.,145

Hartley,162 and Leeet al.163

The iterative least squares analysis is a simple, easy
implement and efficient technique, and is widely used
exponential analysis. In the case of a monoexponential t
sient, the least squares algorithm can even be reduced
algebraic equation that can be solved directly.164 However,
two essential difficulties are inherent in the least squares
the initial guesses for the values of the unknown decay
rameters are needed and, if these initial estimates are p
the iteration may converge to a local minimum rather than
the absolute minimum.165–167

The nonlinear least squares~NLS! method was success
fully used for analysis of decays that consisted of one
three exponential decays. Grinvald,167 Morimoto et al.,168,169

and Tahiraet al.170 found that for a SNR better than 103 a
double-exponential decay could be resolved if the ratio
time constants wast1 /t2.2. However, in the case of thre
exponents the method was found to be very sensitive to e
a small amount of noise.171 Bromage172 concluded that for a
decay-time-constant ratio of 2:1, the retrieved values of
rameters are about 200 times more uncertain on going f
two to three exponentials. Claydenet al.173 concluded that in
the case of a double-exponential decay, NLS fit is robus
t1 /t2.2.4 and SNR is about 103. If a decay consists o
three exponential and SNR'103, the components can be re
solved if t1 /t25t2 /t3.3.5. If the SNR is about 100, thre
components can be resolved if the decay-time-constant
is above 10. It was also noted174,175 that the least square
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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method is not robust with respect to nonrandom errors in
transient.

3. Algebraic methods (Prony’s method)

Prony’s method requires that the decayf (t) be measured
at 2n equidistant pointsf (t0), f (t1), . . . , f (t2n21). Prony29

showed that approximation of the decay by a sum ofn ex-
ponentials,

f ~ t !5(
i 51

n

Ai exp~2l i t !5(
i 51

n

Aim i
t , m i5exp~2l i !

~41!

results in a system of 2n equations with 2n unknowns:
A1 ,A2 , . . . ,An , m1 ,m2 , . . . ,mn :

5
A11A21¯1An5 f ~ t0!

A1m11A2m21¯1Anmn5 f ~ t1!

A1m1
21A2m2

21¯1Anmn
25 f ~ t2!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A1m1

2n211A2m2
n211 . . . 1Anmn

2n215 f ~ t2n21!

.

~42!

Solving this equation, one finds the decay ratesl i and am-
plitudesAi . The difficulty with the solution of equation Eq
~42! is that they are nonlinear in thems. This difficulty can
be minimized by a method proposed by Prony29 in 1795.~A
description of this method can be found in Refs. 176–17!
He suggested to concentrate the nonlinearity of the syste
a single algebraic equation. Letm1 ,m2 , . . . ,mn be the roots
of the equation

~m2m1!~m2m2!¯~m2mn!50, ~43!

that can be rewritten as

mn2a1mn212a2mn222¯2an21m2an50. ~44!

In order to define the coefficientsa, we multiply the first
equation in Eq. ~42! by an , the second equation b
an21 , . . . , thenth equation bya1 and the (n11)th equa-
tion by 21. If we then add up the firstn equations and use
Eq. ~44!, we obtain

f ~ tn!2a1f ~ tn21!2 . . . 2anf ~ t0!50. ~45!

Starting successively with the second, third, . . . , nth equa-
tions, we find that Eqs.~42! and ~44! imply the following n
linear equations:

H f ~ tn21!a11 f ~ tn22!a21 . . . 1 f ~ t0!an5 f ~ tn!

f ~ tn!a11 f ~ tn21!a21 . . . 1 f ~ t1!an5 f ~ tn11!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f ~ t2n22!a11 f ~ t2n23!a21 . . . 1 f ~ tn21!an5 f ~ t2n21!

.

~46!

We may therefore first solve the linear equations@Eq. ~46!#
for a1 ,a2 , . . . ,an , then find the rootsm1 ,m2 , . . . ,mn of
Eq. ~44!, and finally solve anyn of the linear equations@Eq.
~42!# for A1 ,A2 ,...,An .

This method is also known as the ‘‘operator metho
~Ref. 180! or the method of ‘‘linear predictive modeling’
~Ref. 70!. This term reflects that a linear combination
valuesf (t) in the ‘‘past’’ is related to the value in the ‘‘fu-
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions



h

-

ly

r

es
n

a
-

n

-

f t
ied
l
th

th
fo
S

e-
an

i-
to

-
rion.

t in
e

eas-
ts

-
n,

an
of
ts.

is
y of
n

a-

es
w-
ri-
sult

s-
eb

a-

1245Rev. Sci. Instrum., Vol. 70, No. 2, February 1999 A. A. Istratov and O. F. Vyvenko
ture’’ by the linear operator equation@Eq. ~46!#. In the cova-
riance method of linear predictive modeling, applied to t
problem of transient analysis by Shapiroet al.,70 Enderlein
et al.181 and Apanasovichet al.,182 equations equivalent to
Eqs. ~44! and ~46! were obtained from quite different con
siderations, namely from application of thez transform183 to
Eq. ~41!.

The method of Prony in its original form is extreme
sensitive to noise and round-off errors184 and is not accept-
able for analysis of real~noisy! transients. Hildebrand178 pro-
posed using more than 2n21 experimental noisy points
f (tk) for the determination of 2n parameters and search fo
a1 ,a2 , . . . ,an as a linear least-square solution of Eq.~46!,
i.e., as a minimum of the functional

x25 (
k5n11

M S f ~k!2 (
m51

n

amf ~km!D 2

, ~47!

where M is the number of measured data points,M.2n
21. Another version of the Prony method which utiliz
more that 2n21 data points was developed by Su
et al.,86,185 who presented Eq.~46! in the matrix form Y
5AX , where

Y5F f ~ tn!

f ~ tn11!

. . .
f ~ t2n21!

G , X5F f ~ tn21! . . . f ~ t0!

f ~ tn! . . . f ~ t1!

. . . . . . . . .

f ~ t2n22! . . . f ~ tn21!

G ,

~48!

A5F a1

a2

. . .
an

G .

Instead of the straightforward solution of this matrix equ
tion in the formA5@XTX#21XTY, they introduced an aux
iliary matrix Z determined as

Z5F f ~ tn211k! . . . f ~ tk!

f ~ tn1k! . . . f ~ tk11!

. . . . . . . . .

f ~ t2n221k! . . . f ~ tn211k!

G , ~49!

wherek is an integerk>1, and the total number of points i
the decay isM52n211k. Sunet al.86,185proposed to com-
pute the solution asA5@ZTX#21@ZTY#. Such a solution es
tablishes a correlation between the values of functionf in the
future and in the past and thus decreases the sensitivity o
solution to noise. In this form, Prony’s method was appl
to compute solutions for double86 and triple-exponentia
decays185 and showed a comparable accuracy with that of
NLS method ~Sec. VI B 2!. However, Prony’s method is
much more computationally effective. On the other hand,
baseline offset should be removed from the transient be
Prony’s method is applied, which is not necessary for NL

A very important problem for Prony’s method is to d
termine the number of exponential components in the tr
sient n, i.e., the rank of the matrixA. Kumaresanet al.186

suggested using Prony’s method first withn larger than the
number of exponential componentsL, which is actually ex-
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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dates for the signal components. The next step is then
determine a smaller subset of sizeL out ofn exponentials for
which a linear combination ofL exponentials best approxi
mates the observed data using the least squares crite
They suggested starting with a subset of the sizeL51 and
then increase it by one until no substantial improvemen
the error is observed. Holtet al.187 suggested singular valu
decomposition of the matrixX @Eq. ~48!# to determine the
number of exponential components. They suggested incr
ing the size ofX ~i.e., the number of unknown componen
a! as long as all singular values ofX remain large. By suc-
cessively increasing the size ofX, a system must be eventu
ally reached which is unacceptably ill conditioned. The
some of the singular values ofX will become very small.
The transition from a well-conditioned system to such
ill-conditioned system is expected to occur when the size
the matrixX exceeds the number of exponential componen

4. Differentiation of transients and method of
modulating functions

As with Prony’s method, the differentiation method
based on a certain equation which an exponential deca
the form Eq.~4! should comply with. It can be easily show
that a transient given by Eq.~4! obeys the following differ-
ential equation:

f ~ t !1a1

d f~ t !

dt
1a2

d2f ~ t !

dt2
1¯1an

dnf ~ t !

dtn
50, ~50!

where

a15(
i

l i
21 , a25(

i , j
~l il j !

21, . . . ,

~51!
an5~l1l2¯ln!21.

In the case of a noise-free decayf (t), the parameters
a0 ,a1 , . . . ,an can be determined by calculating deriv
tives of f (t) and solving Eq.~50! for t5t1 ,t2 , . . . ,tn . For a
monoexponential decay, the solution of Eqs.~50! and~51! is
simply

l52
d f~ t !

dt Y f ~ t !. ~52!

A disadvantage of the differentiation method is that it do
not allow one to determine the amplitudes of decay. Ho
ever, the major problem with this algorithm is that expe
mental transients are noisy, and large errors would re
from their numerical differentiation.

Differentiation of noisy transients can be avoided by u
ing the method of modulating functions proposed by Lo
and Cahen.188,189 Modulating functionsw(t) are functions
that satisfy the condition that the function and all its deriv
tives are equal to zero fort50 andt5T, assuming that the
function f (t) is determined on the intervalt5@0,T#. Ex-
amples of such functions aretn11(T2t)n11, sin@(p/T)(t
2T)#, etc. It can be easily shown that
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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E
0

T dnf ~ t !

dtn
w~ t !dt

5
dn21f ~ t !

dtn21 w~ t !u0
T2E

0

T dn21f ~ t !

dtn21

dw~ t !

dt
dt

5 . . . 5~21!nE
0

T

f ~ t !
dnw

dtn
dt. ~53!

Following the idea of Valeur and Moirez190 and multi-
plying both parts of Eq.~50! by a modulating functionw(t)
and integrating from 0 toT by parts, as in Eq.~53!, we
obtain

a0E
0

T

f w dt2a1E
0

T

f
dw~ t !

dt
dt1¯1~21!nan

3E
0

T

f
dnw

dtn
dt50. ~54!

Hence, the derivatives off (t) in Eq. ~50! are substituted
by the derivatives ofw(t), which can be calculated analyt
cally. It should be noted that one needs a system ofn equa-
tions to determinen unknown parametersan . In Eq. ~50!
such a system could be obtained by substituting the func
f (t) by its values at different timest5t1 ,t2 , . . . ,tn . This
cannot be done with Eq.~54! since it includes integration
over t. However, one can usen different modulating func-
tions, for example of the formw(t)5tn11(T2t)n111P,
whereP51,2, . . . ,n.

To the best of our knowledge, the sensitivity of th
method of modulating functions to noise has never been a
lyzed using simulated decays. However, it was reported
the method was applied to pulse fluorometry191 and capaci-
tance spectroscopy192 and could successfully resolve two e
perimentally measured exponentials with a ratio of time c
stants of 2. The method of modulation function does
enable one to determine the amplitude of the transients an
not tolerant to nonzero baseline offsets.

5. Integration method

The integration method was proposed by Tittelba
Helmrich.193 The idea of this method is somewhat similar
the differentiation method, discussed in the previous sect
However, instead of differentiation, the exponential dec
f (t) @given by Eq. ~4!# is integrated over timep
51,2, . . . ,n times. It can be then shown that the followin
equation holds:

f ~ t !1b1f ~1!~ t !1b2f ~2!~ t !1¯1bNf ~n!~ t !50, ~55!

where f (p)(t) are the functions obtained by ap-fold integra-
tion of f (t).

f ~p!~ t !5E
~p!

•••E
t

`

f ~u!du5 (
k51

n

Akt k
p exp~2t/tk!

~56!

and the coefficientsbi are given by
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l il j , . . . ,

~57!
bN5~21!nl1l2¯lN .

For example, for a monoexponential transient, it is easy
show that Eqs.~55! and ~57! reduce to

l5
f ~1!~ t !

f ~ t !
. ~58!

Since integration in Eq.~56! is done on an interva
@ t,`#, the functionsf (p)(t) remain functions oft, and the
unknown coefficientsbp can then be obtained from Eq.~55!
by solving a system of equations for anyN data pointst
5t i , or performing a least squares fit using all experimen
data points. Having determined theBp , the decay ratesl i

can be determined by solving the system of equations,
~57!.

Tittelbach-Helmrich193 showed that when integration i
performed over a limited time interval, the integration alg
rithm also enables one to determine the baseline. Howe
the solution is more stable and exact193 if the baseline is
subtracted from the raw signal before the analysis. For
integration method, it was demonstrated193 on computed
two-component decays witht1 /t252.5 that reliable separa
tion of the components is impossible if the SNR is less th
30. Fort1 /t255, two components can be separated up t
SNR of about 10. When two-component analysis is p
formed with a baseline determination, the mean error of
calculated time constants increased by a factor of about 3
compared to the case without baseline restoration.

6. Method of moments

The theory of moments itself dates back to the nin
teenth century, although it was applied to the exponen
analysis much later by Bay.194 This method is based on th
evaluation of the time-weighted momentsmk of the transient
f (t) defined by

mk5E
0

`

tkf ~ t !dt, ~59!

where k>0. For a monoexponentialf (t)5exp(2t/t), the
momentsmk are smooth functions of decay time consta
with a maximum att5t/k ~Ref. 96!. Defining the param-
etersGs as

Gs5(
i 51

n

Ait i
s , ~60!

wheres>1, it can be shown83 that theGs are related to the
moments of the decayf (t) by the equations:

Gs5ms21 /~s21!! ~61!

Equation Eq.~61! can be used to determineGs . Then, the
individual time constants can be determined by solving
system of equations:195
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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U 1 t . . . tn

G1 G2 . . . Gn11

. . . . . . . . . . . .

Gn Gn11 . . . G2n

U50, ~62!

where the roots of the determinant are the individual ti
constantst1 ,t2 ,...,tn of the exponential components. Afte
the time constants are determined, the amplitudesAi are
found by using Eq.~60!. The method of moments can b
applied to analysis of decays that originate from a nonab
excitation function, which is the case in, e.g., fluoresce
decay studies~see Refs. 83, 94, 96, and 195–200 for mo
detail!.

An important part of the analysis of decays usi
method of moments is the determination of the number
exponential components. A common method, discussed
Isenberget al.94,96 and Kirchneret al.,82 is to fit the data
successively to an increasing number of exponential com
nents. As the number of components is incremented, e
succeeding fit incorporates the components of the prece
fit. The appropriate number of components is finally det
mined by evaluating the rms error and by examining
relevance of the results. It is expected that for ann compo-
nent transient, analysis forn11 components will result in an
additional, superfluous component with either an exce
ingly small or negative amplitude, or a negative time co
stant. Finally, before one can apply the method of mome
the baseline offset must be extracted from the measured
Without this step, an excessively large contribution is int
duced into the moments integrals from the tail of the tra
sient.

The method of moments works very well with monoe
ponential decays and returns reliable results even in the
of SNR as low as 10~Ref. 82!. The method of moments als
proved to be capable of extracting two components, eve
relatively severe noise (SNR510).82 Isenberg171 showed
that the method of moments can successfully resolve th
exponential components witht1 /t2 /t353:7:11, andeven
concluded that the method of moments was more stable
respect to noise than NLS.

7. Rational functions (Laplace-Pade ´) approximation

The method of rational approximation for an appro
mate Laplace transform inversion was suggested by Luke201

Fair202 and developed by Longman203–206 and Akin and
Counts.207,208 The idea of the rational function approxima
tion method is to approximatef (t) by a convergent series o
rational functions$ f k(t)%. This series is then inverted ana
lytically to give a sequence of functions$gk(l)%
5$L@ f k(t)#% which, if properly chosen, will converge rap
idly to g(l) as k→`. However, this method is used les
often than the elegant rational functions approximation s
gested by Yeramianet al.209 and Aubardet al.210 They pro-
posed using the rational functions to approximate
Laplace image of the transientf (t) rather than the transien
itself. The Laplace transform, when applied to the funct
of the form
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f ~ t !5(
j 51

n

Aj exp~2l j t ! ~63!

gives the expression

L@ f #~p!5E
0

`

exp~2pt! f ~ t !dt5(
j 51

n
Aj

p1l j
. ~64!

Detecting the exponential components is then a matte
identifying the poles of Eq.~64!. This involves three steps
The first step is to express the Laplace transform off (t) at a
specific pointp0 as a polynomial function through the use
a Taylor expansion truncated to the powerK:

F~p!5L@ f #~p!>(
j 50

K

cj~p2p0! j , ~65!

cj5
1

j ! S djL@ f #

dpj D ~p0!, ~66!

where

djL@ f #

dpj ~p!5E
0

`

~2t ! j f ~ t !exp~pt!dt. ~67!

The second step is to describe the polynomial@Eq. ~64!#
in terms of its Pade´ approximant. The necessary algorithm
for this step can be found in Perron211 or Longman.212 A
Padéapproximant, denoted by@L/M #(p), is the rational
function obtained by the division of two polynomialsAL(p)
andBm(p) of degreeL andM , respectively:

@L/M #~p!5
AL~p!

BM~p!
5

a01a1p1 . . . aLpL

b01b1p1..bMpM . ~68!

Decomposition of the Pade approximant into its part
fractions in the third stage gives the exponential time c
stants and amplitudes according to Eq.~64!. It is assumed at
this stage that the series represented by Eq.~64! is equivalent
to the polynomial fraction, Eq.~68!. Note that because of th
form of the rational expression, Eq.~64!, we are only inter-
ested in the@n21/n# approximants, wheren is the expected
number of exponential components in the multiexponen
decay~usually 2 or 3!.

The only input parameter of the method is thep0 value.
Although theoretically the solution should not depend onp0 ,
round-off errors may result in an unstable solution if t
choice ofp0 is poor~see Ref. 210 for details!. A potentially
serious source of errors of the Laplace–Pade´ method is trun-
cation of the measured decays.213 Examples of applications
of the Laplace–Pade´ technique can be found in Refs. 21
214, 215. The Laplace–Pade´ approximation is not applicable
to decays containing baseline offset. For the Laplace–P´
method it was reported that even with a SNR of about
component detection~for four-component decay with the ra
tio of the neighboringt between 3 and 10! could be per-
formed satisfactorily.209 Clayden214 showed that without
noise one can resolve two exponentials with the ratio of ti
constants t1 /t2.1.5 and three exponentials ift1 /t2

5t2 /t3.2.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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C. Spectroscopic methods for analysis of
nonexponential decays

1. Sampling methods

The sampling methods originate from ‘‘delta conve
gence sequences’’~Ref. 216!. They represent the spectr
function g(l) as a linear combination of values of the da
function f (t) in a sequence of pointst1 ,t2 ,...,tn ~Refs. 217–
220!.

As was shown by Davieset al.221 and Nolteet al.,222 the
most accurate sampling formula was derived by Stehfes223

who based it on a statistical expectation function defined
Gaver.224 Given a Laplace image, in our case an experim
tal decay curvef (t), the algorithm calculates an approxim
tion to the inverseg(l) as follows:

g~l!5
ln~2!

l (
m51

N

Kmf S m ln 2

l D , ~69!

where

Km5(21)m1~N/2!

3 (
k5~m11!/2

min~m,N/2!
~2k!!k11~N/2!

~N/22k!!k! ~k21!! ~m2k!! ~2k2m!!
.

~70!

Theoreticallyg(l) becomes more accurate with increasi
N. However, rounding errors worsen the results ifN be-
comes too large, because of numerous factorials inKm . The
optimum N is approximately equal222,223 to the number of
digits the computer is working with.

Another well-known formula is that of Post an
Widder:225,226

g~l!5 lim
k→`

F ~21!k

k! S k

l D k11

f ~k!S k

l D G , ~71!

where f (k) denotes thekth derivative. It is clear that rela
tively small errors in the evaluation of the derivatives cou
seriously impair the accuracy of Eq.~71! since differentia-
tion, in general, expands inaccuracies. Therefore, Eq.~71! is
frequently used with only the first-order derivative:217

g~l!52l22f ~1!~l21! ~72!

or even with the zero-order derivative:

g~l!5l21f ~l21!. ~73!

The last two formulas were successfully used in capacita
spectroscopy of semiconductors by Okushi a
Tokumaru,227–229 Tomokageet al.230 and Ishikawaet al.231

The sampling methods discussed in this section@with the
exception of the method given by Eqs.~71! and~72!# require
that the baseline offset be extracted before the method ca
applied. The Gaver–Stehfest algorithm was tested by N
et al.222 with double precision arithmetic andN524. It was
shown that without noise one can typically resolve two e
ponentials with a ratio of time constants of 1.5.

2. Correlation method

The correlation method is a signal processing meth
where the input signal is multiplied with a weighting fun
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tion W(t) defined on the time interval@0,tc#, and the product
is averaged over a period of correlationtc . In general form,
the output signal of a correlator is given by

S@g~l!,tc ,td#5tc
21E

td

td1tc
f ~ t !W~ t2td!dt, ~74!

whereW is the weighting function andS is the output signal
of the correlator, which is a function of the decay-rate dis
bution g(l), the duration of the weighting functiontc , and
of the delay timetd between the beginning of the decay a
beginning of the correlation. The delay time is usually intr
duced to improve selectivity or to avoid distortions of th
signal due to overload of the measurement system just a
the excitation which triggers the decay.

The output signal of a correlator is in fact a Lapla
image of the weighting functionW(t) @which is easy to show
assumingf (t)5exp(2lt)#. Therefore, it is fairly simple and
using any table of Laplace transformations, to find suc
weighting function that the functionS(ts) will give a maxi-
mum for a certaints5tmax, and will drop to zero ifts→0 or
ts→`. The selectivity of a correlator and its sensitivity
noise in the input transients are strongly affected by
shape of the weighting functionW(t). Since correlation
analysis of transients is a major technique for determina
of decay time constants in DLTS,34 much effort has been
made to find a correlation function that would combine hi
resolution with high tolerance to noise in the transients. T
results of these studies have been recently reviewed by I
tov et al. ~see Ref. 232 and references therein!. It has been
shown233,234 that a properly chosen correlation function c
provide a resolution only slightly worse than much mo
complicated regularization techniques. It was also sho
that the sampling methods of numerical inversion of t
Laplace transform, discussed in Sec. VI C 1, are identica
the correlation method.233

The spectral functiong(l) can be restored using th
so-called ‘‘frequency-scanned’’ method. This method, as
as the authors know, was proposed independently by He
et al.,235 Ferencziet al.236 and Turchanikovet al.237 In this
method, the duration of the weighting functiontc is varied
for each transient until a maximum in the dependenceS(ts)
is reached. An example of its application can be found
Ref. 238.

Correlation analysis can distinguish exponential com
nents with a ratio of time constantst i /t i 1153.4 if the SNR
in the input transient is greater than 900.234 It can also be
applied to decays with SNR as low as 5, but in this case
resolution will not exceedt i /t i 11'15.

3. Approximation by orthogonal functions

The method of approximation by a series of orthogo
functions is widely used in mathematics. Ifg(l) is repre-
sented by a series of orthogonal functionswk(l), then the
Laplace integral equation, Eq.~5!, will have the form

f ~ t !5L@g~l!#5LS (
k

akwkD 5(
k

akL~wk!. ~75!
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The coefficientsak can be found using a simple numeric
procedure, provided an analytical expression forL(wk) is
known. It has been proposed that we approximateg(l) by
an infinite sum of orthogonal polynomials such
Legendre,31,239–241Laguerre,30,239,242–246Chebyshev30,247–250

or Jacobi251–254 polynomials, by trigonometric
functions239,241,255 or by Fourier series.30 Davies et al.,221

who tested 14 numerical methods of solving the Lapla
integral equation, concluded that the use of Laguerre
Chebyshev polynomials gives very good accuracy ove
wide range of functions. Furthermore, an approximation
orthogonal polynomials already includes regularizatio
since the requirement that the solution can be approxim
by a polynomial of a given degree provides a filtering
solutions.

However, the most natural choices of an orthogonal
of functions for the inversion of the Laplace transform a
singular functions~or eigenfunctions! and singular values~or
eigenvalues! of the Laplace integral operator. Eigenfunctio
and eigenvalues~see Smithies55! are determined for the cas
that the domains off (t) and g(l) coincide, and were dis
cussed in Sec. IV above. If the domains off (t) andg(l) are
different, a generalization of the eigenfunction expansion
provided by the singular function expansion.256 The main
formulas and the concept of the number of degrees of f
dom and of the resolution ratio introduced in Sec. IV rem
valid also for the singular value expansion. Various nume
cal techniques for evaluation of the singular values and
gular functions are known, see, e.g., Refs. 58, 97. The eig
function expansion was practically employed
Provencher,97 who used it to obtain an initial approximatio
for the least squares analysis in his programDISCRETE. How-
ever, as far as the authors know, the programDISCRETE is
probably the only example of application of singular val
decomposition in practical exponential analysis. Since
methods of Gardner transformation and Tikhonov regular
tion ~discussed in the next sections! are much more com
monly used, we will not go into further details of the meth
of approximation by orthogonal functions.

4. Fourier transform (Gardner transformation)

Gardneret al.95,257 proposed the following solution o
Eq. ~5!. The substitutionl5exp(2y) and t5exp(x) trans-
forms the Laplace integral, Eq.~5!, into a convolution
integral:258

f f ~x!5gg~x! ^ kk~x!5E
2`

`

gg~y!kk~x2y!dy, ~76!

where gg(x)5g@exp(2x)#, f f (x)5exp(x)f @exp(x)#, and
kk(x)5exp(x)exp@exp(x)#. These types of integrals may b
deconvolved using the Fourier transform technique:259,260

g~e2y!5I21$I@exf ~ex!#/I@ex exp~2ex!#%, ~77!

whereI is the Fourier transform operator. A graph ofg(e2y)
as a function ofl5e2y will thus show maxima wheneve
l5l i , with the amplitude proportional toAi /l i .

The method of Gardner95 did not attract much attention
when proposed in 1959 because no effective algorithms
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the computation of Fourier integrals were available. T
technique was later modernized by Schlesinger261 using the
fast fourier transform~FFT! algorithm262 to approximate the
Fourier integral. An expression quite similar to Eq.~77! can
also be obtained using Mellin transform~see Refs. 64, 263!
instead of the Fourier transform; however, the computatio
methods for the FFT are much more effective than the al
rithms used to calculate the Mellin transform.

The computation of Fourier transforms by numerical
tegration on an infinite interval is clearly impossible. Ther
fore, the integration interval must be truncated on both sid
i.e., the cutoff points6x0 of the integral in the direct Fourie
transformI and the cutoff points6m0 of the inverse Fourier
transformI21 must be introduced. The cut-off procedure
I usually results in spurious high-frequency components
the spectrum of the direct Fourier transform and in er
ripples in the plot ofg(e2y) vs y, which tend to obscure the
results. The best solution to decrease the amplitude of rip
would be to follow the transient for a sufficiently lon
time.98 An appropriate choice of the cut-off frequencym0 of
the inverse Fourier transform may also decrease the am
tudes of ripples. However, ifm0 is chosen to be too small
there is an unnecessary loss of resolution of the peaks in
result of calculations. Thus,m0 serves as regularization pa
rameter.

Provencher98 described in detail a computer program f
the realization of the Gardner transform. A number of pra
tical details on how the best possible accuracy and resolu
of Gardner’s transform can be achieved, and examples o
practical applications, can be found in Refs. 98, 258, 26
273. Although the method is not sensitive to baseline off
if the integration in Eq.~77! is done on an infinite interval, in
real-life applications where the integrals must be trunca
~as discussed above!, the stability and accuracy of th
method will be higher if the baseline is removed. The re
lution capacity of the Gardner transform was tested by m
researchers. The number of points in the FFT varied from
to 256. All authors73,95,257,258,261,264,265,266,271,273,274came to
the conclusion that the resolution limit for noise-free deca
was betweent1 /t2;1.7 and t1 /t252.5. The signal-to-
noise ratio SNR;200 decreases the resolution limit
t1 /t2;4 ~Ref. 264!, SNR5100 decreases the resolution
t1 /t255 ~Ref. 273!. For noisy transients (SNR520) ~Ref.
273! even the number of components could not be relia
detected.

5. Tikhonov regularization method

The regularization method for solving the Fredholm i
tegral equations of the first kind was proposed independe
by Phillips49 and in a more general form by Tikhonov,275 see
also monographs by Tikhonov90 and Morozov.276,277 In this
method, instead of an exact solution, one searches fo
approximate solution, which gives a minimum to the follow
ing functional:

Ma@g~l!#5 I E
a

b

K~ t,l!g~l!dl2 f ~ t !I1aV@g~l!#,

~78!
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions



o
th

a

he
e

-

e

ct

t

th

x
-

in
g

e

it
ed
e

-
a

u

ra
a

ot

d

im-
-

eri-
on

es
o
one
To
ned

e

m
ials

ity
n

rob-
-
o
en
re is
ive

,
-
as
ly
en-

me
es

py
f a
n
n.
his
ty
jec-
g
i-

ted

er-
es,

c-

f

1250 Rev. Sci. Instrum., Vol. 70, No. 2, February 1999 A. A. Istratov and O. F. Vyvenko
whereV is a regularizing~or smoothing! functional, andK is
the exponential kernel. The practical implementation
Tikhonov’s regularization requires one to choose a smoo
ing functional V suitable for a given problem and, for
given V, the regularization parametera. Then, the solution
g(l) is found using one of the minimization techniques. T
following expressions for the regularizing functional are fr
quently used:275

V@g~l!#5E
a

bS k~l!
dg~l!

dl
1p~l!g2~l! Ddl ~79!

and

V@g~l!#5E
a

bF(
i 50

n

Ki~l!S d~ i !g~l!

dl~ i ! D 2Gdl, ~80!

where k(l) and p(l) are smooth positive functions. Fre
quently, only the second derivative ofg(l) is used in Eq.
~80!:

V@g~l!#5E
a

bS d2g~l!

dl2 D 2

dl. ~81!

The regularization parametera determines the balanc
between the exact and a smoothed solution of Eq.~5!. The
solution which gives a minimum to Eq.~78! for a50 may
have no physical sense and may be unstable with respe
small changes inf (t). On the other hand, if the parametera
is large, the solution will be both smooth and stable, bu
significant part of the physical information contained inf (t)
will be lost.278 Several methods were proposed to choose
optimuma. Most of them depend ona prior knowledge of
the noise level in the data.90,278–283It should be noted that in
practical cases, when the noise level is known only appro
mately, the selection ofa by means of an automated com
puter algorithm remains a challenging task. An interest
method, which gives a clear understanding of how the re
larization works, choosesa using the so-called L
curve.106,108,284–286A survey of methods for selection of th
parametera was made by Davies.287 The problems of exis-
tence of a solution when Tikhonov regularization is used,
uniqueness, convergence rate, etc., were widely discuss
the mathematical literature, and the reader may refer to R
90, 277, 288–294.

Equation~78! may be solved by any optimization tech
nique, for example by the NLS technique. However, it w
shown to be computationally effective90,289to searchg(l) as
the solution of the Euler equation for the functionalMa ,
determined in Eq.~78!:

¹Ma@g~l!#50. ~82!

Several computer programs that utilize Tikhonov reg
larization algorithms are known. Provencher48 distributed his
programCONTIN295 to more than a hundred research labo
tories. His program was employed for high-resolution c
pacitance spectroscopy of semiconductors by Morim
et al.,296,297 Fudamoto et al.,298 Tahira et al.,299 Yoshino
et al.,300 Maier et al.,301 Batovskiet al.,302,303and by Dobac-
zewski et al.72,304,305 The Tikhonov regularization metho
was also implemented by Weese~program FTIKREG306,307
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and program NLREG308!. Riele suggested the program
F1REGU.309 One should note that despite the apparent s
plicity of the Tikhonov regularization, it requires rather com
plicated computational algorithms to accommodate num
cal integration, differentiation, selection of the regularizati
parameter and minimization technique. The programsCON-

TIN andFTIKREG, mentioned above, contain about 5000 lin
of the FORTRAN code. It is a very time-consuming task t
write such a program, and we strongly recommend using
of the available programs rather than to write it oneself.
the best of our knowledge, the code of the above mentio
programs is available from the CPC program library.310 The
program CONTIN can also be downloaded from th
Internet.311

Tsema312 tested the Tikhonov regularization algorith
for a double exponential and showed that two exponent
with t1 /t2.2 can be reliably resolved if SNR>103.
Tarasov313 showed that two exponentials witht2 /t153 can
be distinguished with SNR5100, while exponentials with
t2 /t155 can be distinguished for SNR.15.

6. Method of maximum entropy

The method of maximum entropy stems from probabil
theory and information theory, which introduce a criterio
for the amount of uncertainty represented by a discrete p
ability distribution (p1¯pn). Clearly, a measure of random
ness, or prior uncertaintyH of the data, should have a zer
value when the number of probabilities is unity, i.e., wh
there is no spread at all, and should be positive when the
more than one probability. Furthermore, it should be addit
for independent trials, i.e.,H(pq)5H(p)1H(q). Obvi-
ously, the logarithm log(n), among many other functions
satisfies these requirements.53,54 Since it is just the expres
sion for entropy as found in statistical mechanics, it w
called the entropy of the probability distribution, or simp
the entropy. Henceforth one can consider the terms ‘‘
tropy’’ and ‘‘uncertainty’’ as synonymous.

The entropy, as a measure of uncertainty of the outco
of an experiment, is largest when all admissible outcom
have equal probabilities. The principle of maximum entro
is very simple: when making inferences on the basis o
partial information we must use that probability distributio
which has maximum entropy subject to whatever is know
This is the only unbiased assignment we can make. T
maximum entropy description retains all of the uncertain
not removed by the data, and thus it tends to be most ob
tive or maximally noncommittal with respect to missin
information.314 More details on the basic principles of max
mum entropy can be found in Jaynes,315–321 Skilling,322

Gray323 and Aczelet al.324 A very useful introduction into
information theory and the concept of entropy is presen
by Woodward.325

In experimental science one deals with the values of c
tain physical parameters rather than with their probabiliti
and the method of maximum entropy~MEM! is used prima-
rily as a regularization technique with a regularizing fun
tional identical or similar to the entropy term.326 It is sup-
posed that the unknown functiong(l) has the properties o
the probability distribution@i.e., g(l).0 and, when normal-
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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ized,*g(l)dl51#, and the dataf k5 f (tk) are considered a
constraints. The objective is to choose from all feasible
lutions g(l) the one that maximizes the entropy function
2*g(l)log(l)dl. This problem can be solved algebraica
using the method of Lagrange multipliers,326,327or as a com-
bination of the principle of maximum entropy and the alg
rithm of Tikhonov regularization:328–331

M @g~l!#5iKg2 f i1a Ig~l!logS g~l!

m~l! D I , ~83!

wherea can be considered as a Lagrange multiplier or a
regularization parameter, andm(l) is a prior estimate of
g(l). Landl et al.332 discussed regularization functionals
the form:

V~g!5E D~g!ln~Dg!dl, ~84!

whereD denotes an ordinary differential operator with co
stant coefficients of the form:

Dg5 (
p50

P

ap

dpg

dlp . ~85!

MEM-based filtering is used in physics primarily for im
age processing333 such as forensic imaging, radio astronom
medical tomography, and plasma tomography. The im
restoration techniques benefit from the property of the ME
functionals ln(g) and 2g ln(g) to give reconstructions tha
are positive, have sharpened peaks and flattened baselin334

An application of the MEM principle to the solution of th
Laplace integral equation was discussed by Gzyl,335 which is
so far the only application of MEM to exponential analys
known to the authors.

VII. COMPARISON OF EXPONENTIAL ANALYSES

The idea of comparing numerical methods for expon
tial analysis and choosing the one with the best resolu
has always been very attractive. A standard procedure
compare different algorithms is to apply them to one or s
eral simulated sets of input data~in our case, exponentia
decays! to compare the accuracy of the solution, the sen
tivity to noise in the input data, and the time required
compute the solutions. Many scientists, e.g., McKinn
et al.,336 Smith et al.,73 O’Connor et al.,337

Tittelbach-Helmrich,193 Kirchner et al.,82 Isenberg,171

Bromage,172 Thomassonet al.,71 Zhanget al.,75 Apanasovich
et al.,182 and Doolittle et al.338,339 tested different fitting
methods applying them to simulated or experimentally
tained relaxations. Their results revealed that the compar
procedure which works fine for well-posed problems, retu
by far less conclusive results when one has to deal with
ill-posed problem of exponential analysis. Well-posed pro
lems always have a solution, and the solution is unique
the problem of exponential analysis was well posed, then
analysis of any transient would return the set of paramet
which was used to simulate the input data~assuming that the
algorithm is correct!. This is not the case with ill-posed prob
lems. The solution is not unique, and the algorithm has to
certain assumptions to select one of the possible soluti
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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These assumptions vary from method to method, and
lected by exponential analysis the ‘‘best’’ solution depen
on a number of factors such as: the noise level in transie
~and the distribution of errors in the simulated noise!, the
presence of the offset~and the accuracy of its determinatio
and subtraction!, the number of exponential components
well as the ratio of their time constants and amplitudes, a
the ratio of the time constant of the slowest component to
measurement time.

For example, Bromage172 analyzed three methods: tw
modifications of Prony’s algebraic method~the method as it
was proposed by Prony29 and in modification of Cornell340!
and the NLS method. He simulated double-exponential
cays with equal amplitudes and the ratio of time constant
the componentst2 /t152. The decays with added rando
noise were analyzed using each of the three algorithms,
the scatter of retrieved parameters was compared with
known input noise level. The dependencies, represente
Fig. 8, were found to be parabola-like curves with a sh
minimum, which had an individual position for each metho
The error in the determination oft could be an order of
magnitude higher than at the point of minimum, ifT/t was
changed by a factor of 2 from the optimum value~see Fig.
8!.

The strong dependence of the errors in Prony’s met
on parameters of the transients was later confirmed by
tailed studies of Sunet al.86,185 Consequently, a compariso
of the methods for exponential analysis will be compreh
sive only if: ~a! all methods are tested using the same in
data, and~b! the test includes transients with varied numb
of decay components, ratios of amplitude and decay rate
the components, noise level, baseline offset, ratio of de
acquisition time to the decay time constantT/t, and if ap-
plicable, initial approximation for the fit. Such a comparis

FIG. 8. Magnification of errors due to random noise in the input transie
for three different algorithms~after Bromage, Ref. 172!: nonlinear least
squares analysis~filled circles! ~Sec. VI B 2!, algebraic method as was sug
gested by Prony~Ref. 29! ~triangles! and in modification of Cornell~Ref.
340! ~open circles! ~Sec. VI A 2!. The data are plotted as a function of th
ratio of data acquisition timeT to the mean decay time constantt. Calcu-
lations were done for a double-exponential decay.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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would require a very large number of fits and is beyond
scope of this review article. Clearly, the literature analy
also do not comply with the requirements listed above. Fi
usually only two or three methods were tested by each
thor. Furthermore, different authors used entirely differ
sets of transients to test the methods, which often led
contradictory results~as it can be expected from the discu
sion of Fig. 8!. Just to mention a few examples of su
contradictions, Isenberg171 demonstrated that if a decay co
sists of several components with similar time constants, e
very small errors will cause the NLS fit to fail, wherea
Grinvald et al.47 came to the opposite conclusio
Tittelbach-Helmrich193 concluded, that the method of mo
ments gave large systematic errors even if the SNR of
decay was about 200 and excluded it from the analysis, w
Kirchner et al.82 reported that the method of momen
worked fine even for SNR510.

Despite disagreement in the literature about compara
performance of different methods, a very important conc
sion about the resolution limit of all methods discuss
above can be made. As discussed in Sec. IV, there is a
damental resolution limit to exponential analysis, determin
by the SNR in the input transients. According to Table I, t
maximum resolution which can be achieved for the infin
domain of the solution is 2.44 for SNR5100, 1.88 for
SNR51000, and 1.63 for SNR5104. The SNR in experi-
mental transients depends on the type of experiment an
the number of averaged transients, and seldom exc
SNR5103– 104. Therefore, the maximum resolution that c
be reached in experimental setups,t i 11 /t i , is about 1.6–
1.8. The analysis of literature data reveals that this resolu
has been reached using nearly all fitting and spectrosc
methods discussed in this review article. For NLS analy
~Sec. VI B 2!, the resolution oft1 /t2.2 was reported for
SNR>1000 by Grinvald,167 Morimoto et al.,168,169 and Ta-
hira et al.170 The resolution oft1 /t251.5 for a double ex-
ponential andt1 /t252 for a triple exponential for simulate
decays without noise was reported by Clayden.214 Using the
integration method~Sec. VI B 5!, Tittelbach-Helmrich193 re-
solved components in a double-exponential decay w
t1 /t252.5 even for the SNR as low as 30. The method
modulating functions~Sec. VI B 4! could resolve two expo-
nentials with a ratio of time constants up to 2~Refs. 191,
192!. The same resolution was reported for the Pron
method86 ~Sec. VI B 3! and for the method of moments171

~Sec. VI B 6!. The Gaver–Stehfest sampling method~Sec.
VI C 1! was tested by Nolteet al.,222 who showed that with-
out noise it can resolve two exponentials witht1 /t251.5.
The Gardner transform~Sec. VI C 4! was tested by a numbe
of researchers,73,95,257,258,261,264–266,271,273,274who agreed that
the resolution limit of the Gardner transform for noise-fr
transients is betweent1 /t2;1.7 andt1 /t252.5. Tsema312

and Tarasov313 tested the Tikhonov regularization metho
~Sec. VI C 5! and reported a resolution oft1 /t252 for
SNR51000 andt2 /t153 for SNR5100. The resolution of
correlation analysis~Sec. VI C 2! was reported to be
t i /t i 1153.4 for the SNR of about 900~Ref. 234!.

Thus, the problem of reaching the fundamental reso
tion limit is, in principle, solved for nearly all of the dis
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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cussed methods~for some of the methods no test results a
available!. Hence, the resolution of the method is not a c
terion to prefer one of the methods to another. Indeed, i
very important to choose the method suitable for a giv
experimental problem, such as for monoexponential or m
tiexponential analysis, or a spectroscopic method. This c
sification of methods was discussed in detail throughout
review. However, even if the required type of the algorith
is clear, there are a number of algorithms to choose from
each of these three groups. To make a final choice, the
lowing factors must be taken into account:~a! the stability of
each method with respect to a wide range variation of
rameter values~in other words, how much the sensitivity o
the method to noise and its resolution varies as the par
eters of exponential decay vary!; ~b! the time it takes to
compute a solution;~c! the difficulty of programming the
algorithm and whether the program code is available fr
program libraries;~d! the tolerance of the method to a bas
line offset.

The stability of the algorithms as the parameters are v
ied is an increasingly important problem. As discuss
above, a comprehensive comparison of exponential anal
requires a large number of fits and was beyond the scop
this review article. The literature data are also insufficien
conclusive. In this review article we wish to emphasize t
problem and hope that this discussion will stimulate detai
studies in the future.

The time required to compute a solution is gradua
losing its importance as computers are getting faster. Yet
calculation time may in some cases remain an important
tor to consider, since it may vary by several orders of m
nitude. Generally, the computation time is largest when
variational methods are involved. It is worth noting that
methods ~and particularly the methods discussed in S
VI B ! can be divided into two groups: methods based
variation methods, like nonlinear least squares; and meth
which are based on systems of algebraic equations. The
group of methods anticipates that the transient can be
scribed by Eq.~4! and varies parameters until a good agre
ment between the experimental transient and Eq.~4! is
achieved. The other group of methods~Prony’s method, dif-
ferentiation method, integration method, method of m
ments, Laplace–Pade´ approximation! is based on a certain
equation which includes the decayf (t) ~and eventually its
derivatives, moments, etc.! and time constants and ampl
tudes of the decay. This equation is then transformed in
system of equation by substitutingf (t) with experimental
data pointsf exp(ti), i 51,2, . . . ,N, and the unknown param
eters are determined by solving this system of equatio
These methods are usually much faster, although som
them are also more sensitive to noise.

Programming of methods of monoexponential and m
tiexponential analysis is quite straightforward. The alg
rithms for least squares minimization, FFT, and the solut
of matrix equations, which are parts of some exponen
analyses, are well documented and the code of these sub
tines can be found in textbooks~see, e.g., Ref. 100!. Some of
the spectroscopic methods, such as the sampling metho
correlation method, are also very easy to program. On
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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other hand, the mathematics involved in most powerful sp
troscopic methods such as Tikhonov regularization a
Gardner transform is quite complicated. Fortunately, the p
gram codes of these programs are readily available from
CPC program library.310 Some of the programs can be dow
loaded from the Internet.311

Tolerance of the method to baseline offsets may be v
important, depending on whether a baseline offset can
encountered in the experiment. Few of the discussed t
niques are tolerable of nonzero baseline offsets. The corr
tion method ~Sec. VI C 2! is probably the only algorithm
which is absolutely baseline insensitive. The monoexpon
tial Fourier transform of the transients~Sec. VI A 1!, Gardner
transformation~Sec. VI C 4!, the NLS method~Sec. VI B 2!,
integration method~Sec. VI B 5!, Tikhonov regularization
~Sec. VI C 5! and the method of maximum entropy~Sec.
VI C 6! can accommodate the baseline offset as an additi
parameter, but this usually results in a higher sensitivity
noise in the input transients than in the case without off
Some of the sampling methods~Sec. VI C 1! are also tolerant
to baseline offsets. However, such commonly used meth
as Prony’s method~Sec. VI B 3!, or method of moments
~Sec. VI B 5! will provide wrong results or will even crash i
a decay contains an offset. Unfortunately, algorithms for
trapolation of baseline offsets are poorly developed and
not always sufficiently exact. Therefore, we would reco
mend algorithms that do not require baseline corrections
can accommodate transients with a baseline.

If we put together all pieces of information on each p
ticular method as they are available from the literature, t
ing into account the features which we expect each met
to have, including stability for wide range changes in para
eters and insensitivity to baseline offsets, then the best m
ods ~according to the opinion of these authors! would be:
Fourier transform of the decays~Sec. VI A 1! for the meth-
ods for monoexponential analysis; the NLS method~Sec.
VI B 2! for the fitting methods, and correlation method~Sec.
VI C 2! and Tikhonov regularization~Sec. VI C 5! for the
spectroscopic methods. It should be noted that the correla
method is extremely simple to program and is very versa
although the Tikhonov regularization enables one to get
most of resolution for a given SNR in the transient.

VIII. DISCUSSION

We have reviewed an extensive number of articles fr
various branches of experimental physics and mathema
discussed general limitations of exponential analysis and
nally, summarized the algorithms for exponential analy
suggested in the literature. At first glance, it appears
there is a great variety of numerical algorithms for expon
tial analysis. However, a deeper insight in their princip
and classification of the algorithms, suggested in this rev
article, shows that all methods use the same fundame
regularization principle, based either on a model of the fu
tion g(l) ~as in fitting methods, Secs. VI A and VI B! or on
an assumption of its smoothness~as in spectroscopic meth
ods, Sec. VI C!. In some cases, a direct correlation betwe
the regularization parameters of two different spectrosco
Downloaded 21 Nov 2011 to 171.67.216.22. Redistribution subject to AIP l
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methods has been derived analytically~see, e.g., Refs. 341
342!. We believe that the understanding of this fundamen
principle and of the principle limitations of exponenti
analysis is of major importance for every scientist involv
in evaluations of exponential decays.

The main parameter of exponential analysis is its re
lution, i.e., the ratio of the time constants of two exponenti
which can be resolved in the transient. It is very important
bear in mind~see Sec. IV! that there is a principle limitation
of resolution of exponential analysis. This limitation is inhe
ent in the nature of the problem itself and cannot be i
proved by developing new algorithms. The resolution limit
determined by the SNR in transients~see Table I and Fig. 4
in Sec. IV!. According to the literature, most of the metho
discussed in this review article have reached the resolu
close to the resolution limit of exponential analysis for
given SNR. There are indications that the major trend
development of programs for exponential analysis is n
shifting from achievement of the highest resolution possi
to development of programs that are independent of ini
approximations, stable with respect to variations of time c
stants and amplitudes of exponential components, and in
sitive to baseline offsets. Frequently, a combination of s
eral techniques is required to satisfy these requirements.
fitting routines impose stronger regularization on the pro
lem and work well even for high signal-to-noise ratios. Ho
ever, they are accurate only if the hypothesis of the num
of components is correct and the initial approximation
close to the true solution. A way to obtain this initial a
proximation is to extract it from a spectroscopic method, a
was done by Provencher97 and Mazzolaet al.343 Daniels129

pointed out that many programs based on the NLS met
frequently contain more than one technique. These progr
first use a ‘‘slow but sure’’ algorithm such as the simplex
find a good initial approximation, then a faster techniq
when sufficiently close to the minimum.

Although the problem of acquisition of transients is o
ten neglected in favor of computer algorithms for their ana
sis, the SNR of the transients and, consequently, the res
tion of the exponential analysis are to a great ext
determined by the experimental setup. As it was discusse
Sec. V, an incorrect choice of the settings of the analog
digital converter, too short duration of the digitized transie
or instabilities of the experimental equipment during the d
accumulation can impose severe limitations on the resolu
capacity of exponential analysis.

Finally, it is worth noting that complicated numerica
techniques are not always the only way to resolve sev
exponents with close time constants. In fact, closely adjac
exponential components can frequently be resolved
changing the experimental conditions of the measurem
for example the temperature, or intensity of excitation, etc
number of examples of this approach can be found in
literature.338,344
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331S. D. Böhmig, M. Schmid, and H. Sto¨ri, Surf. Sci.313, 6 ~1994!.
332G. Landl and R. S. Anderssen, Inverse Probl.12, 35 ~1996!.
333S. F. Gull and J. Skilling, IEE Proc. F, Commun. Radar Signal Proce

131, 646 ~1984!.
334R. Nityananda and R. Narayan, J. Astrophys. Astron.3, 419 ~1982!.
335H. Gzyl, The Method of Maximum Entropy~World Scientific, Singapore,

1995!.
336A. E. McKinnon, A. G. Szabo, and D. R. Miller, J. Phys. Chem.81, 1564

~1977!.
337D. V. O’Connor, W. R. Ware, and J. C. Andre, J. Phys. Chem.83, 1333

~1979!.
338W. A. Doolittle and A. Rohatgi, J. Appl. Phys.75, 4570~1994!.
339W. A. Doolittle and A. Rohatgi, J. Appl. Phys.75, 4560~1994!.
340R. G. Cornell, Biometrics18, 104 ~1962!.
341M. Piana and M. Bertero, J. Opt. Soc. Am. A13, 1516~1996!.
342G. F. Miller, in Numerical Solution of Integral Equations, edited by L.

M. Delves and J. Walsh~Clarendon, Oxford, 1974!.
343M. S. Mazzola, N. H. Younan, R. Soundararajan, and S. E. Saddow, R

Sci. Instrum.69, 2459~1998!.
344C. W. Wang and C. H. Wu, Solid-State Electron.35, 1771~1992!.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions


