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Precision NMR relaxation measurements of biological tissue frequently show complex 
multicomponent behavior. This paper presents methods for generating information about 
these relaxation spectra even when the original data are nonideal. A variety of acceptable 
solutions with differing types of simplicity are investigated. Ways of inferring trends in 
relaxation spectra that are independent of the particular analysis model are illustrated with 
examples using linear programming techniques. The question of the number, spacing, 
and signal-to-noise ratio of data for optimal experiments is also addressed. o 1991 Academic 

Press, Inc. 

Measurements of NMR relaxation times in biological tissues have been used for a 
number of years to probe the organizational structure of tissue ( 2 ) , the molecular 
dynamics of water in tissues (2), and the nature of malignant changes (3). Water 
proton relaxation in tissue occurs through spin exchange with macromolecular protons, 
by chemical-shift anisotropy, by restricted motion of water associated with the mac- 
romolecular-water interface, by paramagnetic ions, and by microscopic perturbation 
of the local magnetic field, to name just a few of the mechanisms. It is evident, therefore, 
that a clear understanding of tissue relaxation can be achieved only from highly precise 
and complete measurements. 

NMR relaxation times of tissues now produce contrast in clinical magnetic resonance 
images but image contrast is usually interpreted only qualitatively. Greater exploitation 
of the diagnostic potential of relaxation times requires a better understanding of the 
biophysics of relaxation times in both normal and abnormal tissues as well as more 
quantitative and accurate methods of measuring relaxation in vivo. The successful 
accomplishment of these goals would lead to significant diagnostic and therapeutic 
applications. 

It is the purpose of this paper to provide a practical guide for the analysis of exper- 
imental relaxation data to derive the maximum amount of specific information from 
any relaxation experiment. 
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MATHEMATICAL BASIS 

A basic equation describing the relaxation of magnetization in an NMR experiment 
is 

s 

Till, 
Ytti) = Yi = s( T)e-QITdT, i= l,...,N, T,,, 

where the N decay-curve data yi are measured at times ti , and s( T) is the unknown 
spectrum amplitude as a function of the relaxation time T. The spectrum s(T) may 
consist of discrete components or a continuous distribution. T represents T2 or, with 
a simple transformation of the inversion-recovery data, it represents T, . The limits 
on the integral of Tmin and T,, are chosen to encompass the values of T expected 
for the physical system being analyzed. 

One way to make Eq. [I] discrete for computer implementation is to assume that 
the spectrum is a sum of M 6 functions with unknown positive weights Sj at known 
relaxation times Tj. That is, 

S(T) = 5 Sj6(T- Tj). 121 
j=l 

Typically M is chosen to lie between 100 and 200 so as not to bias the solution into 
a small number of relaxation times. Substituting E.q. [ 21 into Eq. [l] yields 

M 
yi = 2 sjemtifTi > i= I ,.‘., N. [31 

j=l 

This linear system of N equations in A4 unknowns is solved using least-squares or 
linear programming algorithms to find a variety of relaxation spectra Sj, j = 1, . . , , 
M, which fit the data. 

An adequate fit is usually defined in terms of the X2 statistic. That is, 
N 

X2 = 2 (vi - yp)2/UF [41 
i=l 

where J$’ are the data corresponding to the constructed spectrum, and ui are the 
standard deviations of the measurements yi. The expected value of X2 is N and its 
standard deviation is (2N) ‘I2 Typically spectra ,with misfits less than one or two . 
standard deviations above the expected v’ahte are classed as acceptable. 

Effects which distort the data from the idealized representation given in Eq. [I] 
should be incorporated if they have a known form. The following sections describe 
two additions to the basic equation: baseline offsets and nonlinear effects. 

BASELINE OFFSETS 

Baseline offsets are implicit in inversion-recovery sequences and can be present in 
CPMG sequences for various reasons including electronic offsets, nonideal 180” pulses, 
and RF ringdown (4, 5). To account for offsets the mathematical formulation must 
be changed to 
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=- yi = s s( T)epfilTdT + B, i== l,...,N, Tmin is1 

where B is the constant baseline offset. Nonconstant o&ets of a known mathematical 
form are also tractable. 

A test was made using a synthetic decay curve of 100 points contaminated with 
zero-mean, Gaussian noise with a standard deviation equal to 0.2% of the maximum 
amplitude. Many new data sets were constructed by adding positive and negative 
offsets to these original data. 

The relaxation spectra were calculated using a nonnegative least-squares (NNLS) 
algorithm (6). Figure 1 plots the least-squares misfit assuming B = 0 versus the actual 
data baseline offset. For large negative offsets the misfit is very high, reflecting the 
inability to describe negative data. For positive offsets the least-squares misfit rises 
more slowly because a peak appears near the maximum allowed relaxation time T,, 
and generates data similar to a constant positive offset. As T,,, increases, the ap- 
proximation to B improves and the misfit decreases. For this figure, the expected value 
of x 2 was 100 (horizontal dashed line). Erring on the side of a positive offset enables 
a safer interpretation. 

NONLINEAR EFFECTS 

Known distortions due to nonlinearity in the electronics should be incorporated 
into the mathematical description. Failure to do so results in errors in peak positions 
and amplitudes ( 7, 8). For T, experiments, nonlinearity flattens the initial recovery 
and depresses the final stages such that fast relaxation components are diminished 
and slow components are shifted toward faster times. F’or T2 experiments short relax- 
ation components are diminished or eliminated. A typical representation of nonlinear 
effects is 

s 

=lIlaX 
Yi = s( T) [ e-‘flT - A( e-ti’T)3] dT, i= 1 > *.*, N, 

=min 
where A is the degree of nonlinearity embodied by the (e-‘i’T)3 term. 

-4 -2 0 2 4 6 8 10 
Actual Baseline Offset B 

FIG. 1. Misfit assuming zero baseline. The solid line is the minimum x2 achievable by NNLS spectra 
assuming zero offset for data with actual offsets B between -5 and 10. The horizontal dashed line is the 
expected value of x2, which is 100 for these data. 
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Figure 2 illustrates that incorporating a description of the nonlinearity increases the 
reliability of the interpretation. We used 200 CPMG data from a spectrum with discrete 
amplitudes of 5 12 at T = 0.030 and 0.100 s (dashed lines). The data were contaminated 
with 0.4% noise and distorted by nonlinear effects as in Eq. [ 61 to produce a new data 
set with A = 0.20. Figure 2a shows the corresponding NNLS spectrum (solid lines) 
derived from these new data without allowing for the nonlinearity. Increasing the 
nonlinear distortion of the data increases the x2 misfit, and the peaks shift to longer 
times before eventually merging. Figure 2b shows the NNLS spectrum obtained after 
incorporating the correct degree of nonlinearity. The x2 misfit is acceptable and the 
peak positions and amplitudes are well determined (given the noisy data). 

If the actual degree of nonlinearity is not known then a series of A values may be 
tested. For A less than the true value, peaks are shifted to longer times and X2 is 
slightly larger than its expected value. As A increases beyond the true value of 0.20 
the peak positions remain well reproduced but their amplitudes become progressively 
more distorted. In addition, spurious peaks begin to appear at short times although 

10-Z 
Relaxation Time 

1 o-1 
T (s) 

600, 500 c I I b 

Relaxation Time T (s) 

FIG. 2. (a) A NNLS spectrum (solid lines) derived from nonlinearly distorted data (A = 0.20) without 
allowing for the nonlinearity. The dashed lines represent the true spectrum. (b) A NNLS spectrum incor- 
porating the nonlinear effects (solid lines). The noisy data prohibit an exact recovery of the spike amplitudes 
and positions; however, the derived spectra and their misfits are improved. 
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the x2 misfit remains at an acceptable level. Thus, overestimating the degree of non- 
linearity results in an acceptable solution but not one which resembles the true 
spectrum. 

Numerical schemes which attempt to determine a spectrum and A automatically 
such that x2 is minimized are doomed to fail because X2 decreases monotonically as 
A increases. The marginally better fit achieved by setting A larger than its true value 
may be due to the extra degree of flexibility to represent the noisy data provided by 
the (e-‘i’T)3 term. Thus nonlinearity in the amplitude of the data can be handled 
explicitly to achieve accurate relaxation spectra if the nonlinearity is known, However, 
attempts to estimate nonlinearities give unreliable results unless the nonlinearity is 
extreme. 

MINIMUM-STRUCTURE SOLUTIONS 

In practice, a finite number of noisy relaxation data cannot uniquely determine 
s( T). Many solutions exist which adequately fit the data. Moreover, the possible 
forms of these acceptable spectra are very different, ranging from 6 function represen- 
tations, to piecewise-constant models, to smooth profiles. This is important because 
the correct underlying explanation for tissue relaxation cannot be determined uniquely 
from relaxation measurements alone (6, 8). Models of tissue relaxation based on 
several identifiable groups of spins which lead to discrete relaxation spectra cannot be 
distinguished experimentally from models based on continuous size distributions of 
compartments which lead to continuous spectra. Because of this nonuniqueness, it is 
essential to analyze relaxation data using algorithms which fit the data with diverse 
spectra. Each solution reveals different aspects of the data so that more complete 
interpretations are possible. Our philosophy is to construct a variety of minimum- 
structure solutions which are likely to have the essential features required by the data 
and be consistent with physical reality. Minimum structure may be defined in several 
ways. Three examples are a few isolated 6 functions, a piecewise-constant spectrum 
with few changes in level, or a smooth curve with few oscillations. This is the principle 
of parsimony (9-12). 

The minimum-misfit algorithms generate spectra composed of a few isolated 6 func- 
tions which correspond to the first definition of minimum structure. Sometimes it is 
appropriate to relax the fit from the minimum possible to a larger misfit near the 
expected value. A linear programming (LP) algorithm (6) is able to do this while still 
generating spectra composed of a few 6 functions. 

The second definition of minimum structure is realized by using LP to minimize 
the one norm of the spectrum variation ( 13). That is, the algorithm finds that spectrum 
which minimizes 

M-l 
C Isj+l - sjl 

j=l 

subject to fitting the data constraints. Figure 3a (solid line) gives the minimum one- 
norm variation spectrum derived using 100 noisy data corresponding to the true spec- 
trum given by the dashed lines. The one norm allows large jumps locally, but the total 
variation is the minimum possible for the misfit level achieved. Allowing a larger misfit 
results in even less variation. 
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FIG. 3. The solid lines in (a) and (b) are the spectra corresponding to the minimum one-norm and 
minimum two-norm variations, respectively. The dashed lines ;are the true spectra. The X2 misfits are both 
near the expected value of 100 despite the very different forms of the calculated spectra. The small steps on 
the flanks of the spectrum in (a) are artifacts of the finite partition of the relaxation-time axis. 

The third minimum structure definition is achieved by adding extra constraints to 
the basic NNLS formulation (6). One version of these constraints requires a joint 
minimization of the x2 misfit plus the two-norm variation 

M-l 

j=l 

These constraints discriminate more strongly against large jumps in the spectrum than 
the one-norm version (Eq. [ 71). The result is the very smooth profile shown in Fig. 
3b (solid line). This solution has an acceptable misfit which is nearly the same as that 
in Fig. 3a. Figure 3 illustrates the nonuniqueness by showing that broad distributions 
of relaxation times fit data from spectra composed of a few 6 functions. 

INFERENCE 

The linear programming and least-squares tools described in the previous sections 
provide a flexible framework for the interpreter to design algorithms to return useful 
information from the data. In this section, we explore some possible design strategies. 
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Diverse spectra may fit the same noisy data equally well. This inherent nonunique- 
ness cannot be overcome using methods which construct only a single solution because 
the space of acceptable solutions is infinite in extent. Since an exhaustive search is 
impossible, it is preferable to infer information about features or properties common 
to all acceptable spectra. This approach usually generates extreme values of some 
property along with the spectrum that achieves this extreme. For a particular misfit 
level, all other acceptable solutions have values bounded by this extreme. 

The best-fit solutions can be thought of as examples of this technique. All other 
spectra must have a larger misfit. These solutions are important because they determine 
whether any spectrum which adequately fits the data exists. 

The minimum-structure solutions in Fig. 3 are extreme in the sense that every other 
spectrum must have more one-norm or two-norm variation for the given misfit level. 
They are not extreme in the sense of barely fitting the data. Minimum-structure so- 
lutions are important because features on these spectra are likely required by the data 
and not simply artifacts of the noise or the construction algorithm. They are conser- 
vative representations of the data. 

Linear programming is a powerful tool for generating bounds on any linear com- 
bination of the spectrum amplitudes, Sj, by minimizing or maximizing the objective 
function 

M 

j=l 

subject to fitting the data. The weights Wj are chosen such that in combination with 
Sj they represent the property to be made extreme. 

Figure 4a shows an application of the LP inference approach. In this case, the signal 
is maximized within a series of narrow, nonoverlapping intervals, subject to achieving 
an acceptable misfit level. The maximum value as a percentage of the total spectrum 
integral is plotted as a horizontal bar spanning each interval. The maxima themselves 
do not form a solution which fits the data because each one is realized by a different 
spectrum; however, the maxima closely follow the form of the true spectrum per- 
centages (dashed lines). Note that this information is independent of any construction 
algorithm and is information about the entire space of acceptable solutions. Hence, 
the true solution (if it does not radically misfit the noisy data) must have values within 
these extremes. An example inference is that all spectra (with a one-norm misfit less 
than that used in generating the figure) must have less than 3 1% of their signal within 
the interval 0.0185 < T < 0.0216 s. Examining a single spectrum from a particular 
construction algorithm does not permit rigorous inferences of this type. 

The corresponding lower bound over such narrow intervals is zero because the 
signal is easily moved just outside the region without significantly changing the misfit. 
However, as the intervals widen, larger shifts become more difficult and eventually 
some signal must appear within the interval. For these data, a region near 0.100 s is 
the first to have a nonzero minimum. This is consistent with the form of the true 
spectrum, which has most of its signal near 0.100 s. For example, when the range is 
from 0.040 to 0.185 s, the minimum signal is 38% of the total. That is, these data do 
not permit any spectrum with a similar or smaller misfit to have less than 38% of its 
signal over this range. The true spectrum has 56% of its signal within this range. 
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FIG. 4. In (a) the horizontal bars define a series of narrow intervals over which the spectrum amplitudes 
were maximized. The height of the bar is the resulting maximum percentage of signal in that interval. The 
dashed lines are the percentages of the components of the true spectrum. In (b) the least-upper-bound 
spectrum is plotted with solid lines and the true spectrum with dashed lines. The small steps on the flanks 
of the spectra are artifacts of the finite partition of the relaxation axis. 

The least-upper-bound solution is a second example of an inference using LP. In 
this case, subject to fitting the data and the extra constraints 

Sj G S, j= 1 ,--’ 3 M, 1101 
the LP algorithm minimizes the objective function 

4 = s, 1111 
where S is an additional variable. The result is the least upper bound S and a spectrum 
which achieves this bound. Figure 4b shows an example of this approach. The true 
spectrum is plotted as dashed lines. This smooth, continuous spectrum was selected 
to be representative of distributions of relaxation times arising from tissues with a 
wide range of proton environments. The inference is that all other acceptable spectra 
must meet or exceed the least upper bound S somewhere within the given interval 
from 0.001 to 0.400 s. Note that these spectra have quite an unusual form. They are 
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essentially either zero or the bound S. The minor steps on the sides of the blocks are 
due to the finite partition of the Taxis. Yet these block-like spectra fit the data well, 
with x2 equal to its expected value. 

One final example of an inference using LP follows the observation by Kroeker et 
al. ( 14) that spectrum peaks from KHT tumors in mice redistribute toward higher 
relaxation times as the tumors grow. The first moment quantifies this shift and in 
discrete form it is 

5 TjSj. [=I 
j=l 

This is equivalent to the LP objective function of Eq. [9] with weights Wj = Tj. The 
first moment of individual peaks within a spectrum is calculated by altering the upper 
and lower limits of the summation over j. Minimizing and maximizing the objective 
function [ 121 subject to the data constraints gives the extremes allowed by the data. 
Comparing the maximum first moment at one tumor weight with the minimum first 
moment at a greater weight shows whether the increase in first moment is rigorously 
required by the data. Figure 5 gives an example of this method applied to noisy data 
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FIG. 5. The solid lines in (a) and (b) are spectra with minimum and maximum first moment, respectively, 
within an interval from 0.001 to 0.009 s. The dashed line is the true spectrum. 
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from the three-peak test spectrum shown as dashed lines. An upper bound was imposed 
on the one-norm variation of the solution (Eq. [ 71) to give the blocky spectra shown 
as solid lines. An interval from 0.001 to 0.009 s was chosen to encompass the first 
peak. The minimization result in Fig. 5a shows a shift to shorter times with respect 
to the true spectrum. The maximization result in Fig. 5b shows a redistribution to 
longer times. The average relaxation time of a peak is given by 

Ta, = $J 7jSj $J Sj. [I31 
.i=il. I’ i=& 

For the true spectrum T,, = 4.1 ms. The minimum and maximum first-moment 
spectra in Fig. 5 have T,, = 3.6 and 4.6 ms, respectively. These extreme values can 
be compared with other relaxation times of individual probes to see if systematic 
change with tumor progression is resolvable. Such strategies also cope with the biological 
heterogeneity inherent in such systems. 

EXPERIMENTAL DESIGN 

The resolution and accuracy of spectra derived from relaxation data improve with 
the number of points, N, and the signal-to-noise ratio, SNR. The ideal experiment 
yields an infinite number of precise data so that s(T) is uniquely determined, however, 
compromises must be made in practice. For T, experiments especially, there are usually 
strict time constraints which prohibit sampling a large number of points. In this section, 
we examine how to choose N, SNR, and the measurement times ti to maximize the 
information in the data. Backus and Gilbert (15, 26) presented a method which is 
suited to this analysis. Parker ( 17) and Oldenburg ( 18) reviewed the Backus-Gilbert 
(BG) method. 

Consider a linear combination of both sides of Eq. [I], 

5 Ui( To)yi = 2 ai( To) J”^ S( T)c”‘~~T 
i=l i=l Tmin 

s 

Till, 
= S( T) 5 ai ( To)e-f”TdT, 

Tllll” i=l 
1141 

where ai ( To) are coefficients for a particular T = 2r0. Define the averaging function 
A( T, To) as a linear combination of the exponentials 

A( Ty To) = $ ai( To)tl-“‘T. [I51 
i=l 

Substituting Eq. [ 151 into Eq. [ 141 gives 

Tmax (s( T,,)) = 
s 

s( T)A( T, T,,)d7’, 
TIlli” 

[161 

where 

(I) = 5 ai(To)Yi 
i=l 

1171 
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is an average of the spectrum near T = T,, . For accurate data these averages are unique 
for a given set of aj ( To) because every solution reproducing the data, yi, has the same 
linear combination in Eq. [ 171. Thus the averaging function is a window through 
which all acceptable spectra are viewed, and the average value is information common 
to these spectra and independent of any construction algorithm. For inaccurate data, 
the averages have a known variance derived from the data covariance matrix. 

The BG method achieves a tradeoff between the averaging function resolution and 
the variance of the average value by finding those ai ( To) which minimize 

+(To) = v(To) + ~w(To)> [I81 

where 

W( To) = *A’( T, To)dT + ‘A2(T, To)dT [I91 

is a measure of the averaging function width, 

?‘(To) = ; af(T [201 
i=l 

is the variance of the average estimate, and P is a positive tradeoff parameter. When 
p = 0 the variance is minimized at the expense of the resolution. When p is large the 
resolution width is small but the variance is increased. The definition of W( To) used 
here is a modification of the spread criterion of (15). We chose this form because it 
usually produces nonnegative averaging functions centered on To and symmetric on 
a logarithmic scale. The resolving width of the averaging function is defined as the 
ratio of the relaxation time at the upper half-maximum point to that at the lower. 

Figure 6a shows three typical averaging functions for a relative error in the average 
estimate of 2%. The locations are To = 0.004,0.020, and 0.100 s. These functions are 
rather wide, suggesting that components separated by less than a ratio of about 4 are 
not fully resolved by the 100 noisy, logarithmically spaced data. The three averaging 
functions from left to right have widths of 4.8,5.8, and 4.4. However, these averaging 
functions are wide partly because no positivity constraints on the spectrum can be 
applied. Hence, this extra information cannot be used to improve the resolution. 

Figure 6b shows the effect on resolution of a different data sampling. The decay 
curve was resampled with a linear instead of logarithmic spacing over the same interval. 
The three new averaging functions now have widths of 10.1,6.4, and 4.1, for the same 
2% relative error in the average estimate. Resolution of fast relaxing components near 
0.004 s is degraded because of the relatively few data at short times. Resolution of the 
long components near 0.100 s is enhanced because more decay-curve data now fall 
near this time. In general, to resolve a component at a particular relaxation time, this 
method shows that the decay curve must be sampled often at measurement times near 
the target relaxation time. 

The effects of various N and SNR on the resolution can be assessed by a tradeoff 
curve. A tradeoff curve at a particular To is formed by plotting the standard deviations 
of the averages versus the widths of the averaging functions obtained by minimizing 
Eq. [ 181 for many values of p. This calculation requires only the sampling times ti 
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FIG. 6. (a) The three averaging functions are derived from 100 logarithmically spaced decay-curve data 
covering the interval 0.001 to 0.500 s. Their locations rc, are 0.004, 0.020, and 0.100 s, and their ratios of 
upper to lower half-maximum point are 4.8, 5.8, and 4.4. (b) The three averaging functions are derived 
from 100 linearly spaced data covering the same interval. Their locations are also the same. However, the 
resolving widths are now 10. I, 6.4, and 4.1. 

and the data standard deviations ui . Thus, the tradeoff curve is independent of the 
actual data yi and so the analysis is general rather than specific to a particular set of 
measurements. 

We generated data sets with 30,60, and 120 points spaced logarithmically between 
0.001 and 0.500 s. For each of these, the SNR was set at 250, 125, and 62.5. Thus 
there are nine data sets in total. The SNR is defined as the ratio of the decay-curve 
maximum at zero time to the standard deviation of the added noise. Five of the nine 
tradeoff curves for T,, = 0.020 s are plotted in Fig. 7a. Curves closer to the lower left 
comer indicate better resolution because, at a given standard deviation of the average 
estimate, the width is smaller. As expected, increasing the number of points at a 
particular SNR (top three curves) or increasing the SNR for a fixed number of points 
(bottom three curves) improves the resolution. Figure 7b shows two pairs of curves 
(indistinguishable) which indicate a rule for choosmg the number of data N and the 
SNR. The top pair corresponds to 30 points with a SNR of 125 and 120 points with 
a SNR of 62.5. The lower two curves result from 30 points with SNR = 250 and 120 
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FIG. 7. The tradeoff curves in (a) and (b) quantify the decrease in standard deviation of the average 
estimate with the increase in width of the averaging function. (a) The curves from top to bottom correspond 
to 30 data with SNR = 62.5, 60 data with SNR = 62.5, 120 data with SNR = 62.5, 120 data with SNR 
= 125, and 120 data with SNR = 250. (b) The top curve corresponds to 30 data with SNR = 125, as 
well as 120 data with SNR = 62.5. The lower curve is 30 data with SNR = 250 and 120 data with SNR 
= 125. These two pairs of curves overlap and suggest that the resolving power follows the product 
SNR fi. 

points with SNR = 125. The overlap of the individual pairs suggests that the resolving 
power follows the product 

SNR\TN, [211 

with higher values indicating better resolution. Hence, to achieve the same resolution 
at half the SNR it is necessary to measure four times as many points. This rule is 
intuitively obvious for monoexponential data, where the decay curve is a straight line 
on a semilogarithmic plot. Measuring at four times as many locations is equivalent 
to repeating the measurements at the original locations four times and so doubling 
the SNR. Because the BG method is independent of the actual data values, it dem- 
onstrates the general applicability of Eq. [ 2 11. This result aids the design of experiments 
where time constraints may be different for different S’NR and N. 
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