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Transverse relaxation rates of a number of water-filled porous rock samples have been 
measured as a function of static magnetic field strength and Carr-Purcell pulse spacing. 
At the lowest field and shortest pulse spacings, T2 appears to be dominated bi.relaxation 
at the fluid-solid interface, while at higher fields and longer pulse spacings, there is clear 
evidence of molecular diffusion in a magnetic field gradient. This gradient is due to the 
magnetic susceptibilitycontrast between grain material and-the pore fluid. Samples with 
small pores show the strongest evidence for restfiction of diffusion, and a broad distribu- 
tion of pore sizes is another important complicating factor. A theory which takes into 
account all the abov-e effects in a consistent manner has been developed; the total relax- 
ation rate is not simply the sum of the relaxation rates of the individual processes. With 
parameter selection guided by independent measurements of magnetic susceptibility 
and pore size, the theory adequately reproduces expefimental results. o 1990 Academic 

Press, Inc. a 

Nuclear magnetic relaxation processes of fluids in restricting geometries are of in- 
terest in a wide variety of materials and systems. Fluids oontained in biological cells, 
porous inorganic compounds -suGh as zeolites, and packings of regular and irregular 
particles have all been the subject of NMR investigations. Molecular diffusion in 
these media has been of particular interest; a recent review (1) contains a summary 
of the field. Water-saturated sedimentary rocks constitute an unusually complex sys- 
tem in which to study restricted diffusion: the pore space is usually heterogeneous in 
both size and shape. Also, the surfaces of the solid grains play an active part in relax- 
ation of the pore fluid, but are not the sole source of relaxation. Furthermore, internal 
magnetic field gradients vary considerably from’point to point-within the pore space. 

Nevertheless, there has been considerable interest in the study of the NMR relax- 
ation behavior of water-saturated rock samples (24).~There is potential for NMR 
techniques to yield valuable petrophysical information from oil well-bore logs: the 
total fluid content and the permeability of the formation are of fundamental impor- 
tance to oil recovery efficiency. Furthermore, NMR imaging and-spectroscopy tech- 
niques may be used for detailed analysis of rock cores brought to the surface (5). 

Usually, longitudinal relaxation rates are used to estimate the petrophysical proper- 
ties of the rock ( 6 ), but the transverse relaxation rates can give equally valuable infor- 
mation. When using a spin-echo sequence, it is well known, however, that the rate of 
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decay of transverse magnetization is strongly affected by the presence of diffusion 
through magnetic field gradients. The molecular motion causes a random variation 
of the Larmor frequency of a given nucleus, resulting in a more rapid loss of coher- 
ence than would be expected from consideration of the usual spin-spin interactions 
alone. The resulting echo attenuation can be reduced by employing the multiple- 
pulse (CPMG) technique of Carr and Purcell ( 7) as modified by Meiboom and Gill 
(8)) but the high internal gradients present in heterogeneous systems can make it 
difficult to eliminate the attenuation effectively. Alternatively, this effect may be ex- 
ploited, and many studies have been made of the effect of an externally applied one- 
dimensional linear field gradient on transverse relaxation behavior (9), this tech- 
nique being used to measure diffusion coefficients and also, in the case of restricted 
diffusion, to estimate the dimensions of the restricting boundaries ( 10). 

In porous media, the internal magnetic field gradients are caused by the different 
susceptibility values of the solid grains and the pore fluid, the form of the gradient 
depending on the geometry of the pore structure and the magnitude being directly 
proportional to the applied magnetic field strength. For rocks, the situation is further 
complicated because the diffusion is restricted in the pore space (II). If, however, 
the pulse spacing in the CPMG sequence can be made short enough, or the internal 
field gradient strengths can be reduced by a reduction of the applied magnetic field, 
then transverse relaxation is dominated by contact between the relaxing spins and 
the surface of the rock matrix. 

For the present study, the relaxation properties of a suite of six sandstones and two 
carbonates were measured. The samples span a broad range of porosities and pore 
sizes. The range of echo spacings and static field strengths used allowed exploration 
of both grain-surface-dominated and diffusion-dominated relaxation regimes. A the- 
ory is presented which accounts for the effects of bulk relaxation, surface relaxation, 
the internal magnetic field gradients, and restricted diffusion. When these factors are 
combined in a consistent manner which explicitly takes into account the distribution 
of pore sizes, the total relaxation rate is not simply the sum of the relaxation rates of 
the individual processes. 

EXPERIMENTAL METHODS 

All NMR measurements were performed using a Bruker CXP spectrometer 
equipped with an electromagnet capable of giving proton Larmor frequencies up to 
90 MHz. The cores used were 8 mm in diameter and 10 mm long. Sample tempera- 
ture was regulated to 3 13 K, and the cores were held in 10 mm NMR tubes under 
fluorinated oil to prevent water evaporation during the course of the experiment. The 
CPMG sequence was used for transverse relaxation measurements 

9O;*,-,,--t,,-[l8O;JJ, - 2&,1, 
with t,, varying from 45 ps to 1.8 ms. The subscripts denote the phases of the pulses 
in the phase-cycling scheme used to remove any baseline offsets. A single data point 
was acquired at the center of each echo, with up to 2048 data points being collected. 
Phase-sensitive detection was used for all measurements, the receiver phase being 
adjusted to give maximum signal amplitude in the in-phase channel. 
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Normally, porous media exhibit a spread of relaxation rates which reflects the dis- 
tribution of pore sizes present. The transverse relaxation data were therefore analyzed 
using the stretched-exponential model of Kenyon et al. (6): 

. 111 

This allows for a distribution of relaxation rates while keeping the number of variable 
fit parameters small. 

Measurements were made at three field strengths corresponding to proton Larmor 
frequencies 5,40, and 90 MHz, but because of the greater RF power requirements at 
high operating frequencies, the transverse relaxation rates could only be measured 
with the longer tcp values at the two higher field strengths. 

THEORY 

The results of transverse relaxation measurements made on two of the rocks, Berea 
sandstone and Leuders limestone, are shown in Figs. la and 1 b. The eight rocks 
showed a range of behavior, of which these two examples are representative. The 
transverse relaxation rate is plotted against Bit&,, which anticipates the importance 
of diffusion at long values of tcp and at high values of magnetic field strength ( 7). At 
the lowest values of B$ t& the transverse relaxation rates are independent of tq. The 
values of 1 / T2 in the limit Z3&, + 0 are well in excess of the relaxation rate for pure 
water under the same conditions, which was measured as 0.3 s-l. This indicates that 
significant relaxation is occurring due to the presence of the grain surfaces. 

At higher values of Bz t&,, there is clear evidence of the effect of molecular diffusion 
in the presence of a static magnetic field gradient. The Carr-Purcell equation ( 7) for 
the measured value of T2 is 

$-=$++Gt,)“, 
2 20 

[21 

where ( 1 / T20) is the relaxation rate due to all other processes, y is the gyromagnetic 
ratio of the resonant nucleus, G is the static magnetic field gradient, and D is the 
diffusion coefficient of the liquid. The mean magnetic field gradient caused by the 
inhomogeneity of the magnet used to collect the data was measured to be better than 
2.0 mT m-’ at a field strength of 1 .O T. This is far too small to account for the pulse- 
spacing-dependent relaxation rate, so we presume that magnetic field gradients 
within the porous sample itself ( 22) are responsible for the enhanced relaxation rate. 

It can be seen that although Eq. [ 21 can be employed usefully to explain the behav- 
ior of Berea sandstone, it clearly fails to describe the Leuders limestome results. From 
the mercury porosimetry measurements, we know that the median pore size of the 
Berea sample is more than 30 times that of the Leuders sample. Therefore, we con- 
clude that Eq. [ 21 is inadequate when the diffusion of molecules in porous solids is 
restricted by the presence of impenetrable boundaries. This complicating factor has 
been considered in previous work ( 13-16). It is our purpose to extend this work to 
encompass the effect of a distribution of pore sizes, and in doing so we shall find it 
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FIG. I. The variation of the transverse relaxation rate of (a) Berea sandstone and (b) Leuders limestone 
with the static field strength and the Carr-Purcell pulse spacing. Experimental data points are shown for 
three proton resonance frequencies: 5 MHz (solid circles); 40 MHz (open circles); 90 MHz (open 
triangles). 

necessary to develop a model which treats grain-surface relaxation simultaneously 
with diffusion-related relaxation. 

Magnetic relaxation due to diflusion in a single pore. Neuman (15) derived 
equations describing the decay of transverse magnetization due to restricted molecu- 
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TABLE 1 

Roots oftan(cu,) = 2a,/(2 - (Y;) 

1 2.081576 
2 5.940370 
3 9.205839 
4 12.40444 
5 15.57923 
6 18.74265 
7 21.88279 

lar diffusion in a uniform field gradient. Three geometries were considered: planar, 
spherical, and cylindrical; the three equations have the same general form. Micro- 
scopic examination of rock samples shows the pores to be irregularly shaped. How- 
ever, they are closer to spherical than to planar or cylindrical, so we use 

x 

( 

1 _ 3 - 4exp(-a/2) + exp(-a) 11 , a 
&rg!, [3] 

where R is the pore radius. The numerical coefficients ai (amR in Neuman’s 
notation) are the solutions of the transcendental equation 

cx;J;,2((Yi) - ~J3,2(4 = 0. [41 

J3,2(x) is the Bessel function of order 3/2, and YS12 is its derivative with respect to 
its argument. Using the identities of spherical Bessel functions ( 17)) it may be shown 
that Eq. [ 41 reduces to 

2CXi 
tan(ai) = (2 _ ,:) . 

The first seven nonzero roots are given in Table 1. Asymptotically, the roots are given 
by crj = ix. 

The Neuman equation must be modified when a Cat-r-Purcell (CP) pulse sequence 
is used. For any magnetization decay which can be described by 

M(t) = ewKf(t)) 161 

it is easy to show that the magnetization of the n th echo of a CP sequence is 

M( 2n tcp) = exp( nf(2tcp)). 171 
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Therefore, the transverse magnetization decay in a CP sequence can be described by 

x 1 _ 3 - 4 exp( -u/2) + exp( -a) 
a )I 9 a&$ [8] 

where M(t) is measured at the center of the echoes. 
Internal magneticjield gradients. At the outset, we encounter a serious problem in 

characterizing the static magnetic field gradient. This gradient arises from the mag- 
netic susceptibility contrast between pore fluid and solid grains. One might start by 
approximating a pore as an ellipsoid of revolution, for which the magnetic fields may 
be calculated analytically. Standard textbooks (18) treat the electric field case, which 
is perfectly equivalent to the magnetic field case. If a uniform field is applied to an 
ellipsoid, the resulting internal field is uniform and parallel to the applied field, re- 
gardless of the orientation of the ellipsoid axes. Therefore the gradients must arise 
because the pore space is irregularly shaped, which microscopic examination mani- 
festly demonstrates is the case. 

Glasel and Lee ( 19) have calculated the field gradient outside a single sphere 
(representing a grain) having a magnetic susceptibility differing from that of an exter- 
nal medium (representing the fluid-filled pore space). For a region close to the sphere 
the average gradient is 

G = ~oHoAx/4R,, 191 

where p. is the magnetic permeability of vacuum, Ho is the applied magnetic field 
strength, Ax is the difference between the volume magnetic susceptibilities of the 
sphere and the external medium, and R, is the radius of the sphere. Because the 
grains themselves are irregularly shaped, we interpret R, as a local radius of convex 
curvature. We further assume that the local radius of curvature is roughly the same 
as the radius of the pore itself. We are not satisfied by these approximations, but in 
the absence of a detailed stereological study of the pore space, we are not sure how to 
better characterize the magnitude of the field gradient within individual pores. 

A more sophisticated approach has been taken by Majumdar and Gore (20) : they 
sum the fields due to an array of spheres immersed in the medium. This model works 
well for a dilute system of spheres, but its validity is questionable when the grains 
themselves are highly irregular and densely packed. Therefore the benefits derived 
from using this detailed model do not warrant the attendant computational com- 
plexity. 

Other transverse magnetic relaxation mechanisms. Brownstein and Tarr (21) ana- 
lyzed the manner in which magnetization of fluids decays in a cell of characteristic 
dimension R. An essential element of their model is a bounding surface which has 
a certain probability of relaxing spins that come in contact with it. This surface is 
characterized by the parameter p (Brownstein and Tarr use the symbol M) which 
intuitively may be thought of as the thickness of the fluid layer that may be influenced 
by the surface, divided by the surface relaxation time. Contained in the cell is a fluid 
having diffusion coefficient D. When the surface is efficient at relaxing the spins, that 
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is, when pR / D 9 1, the relaxation rate is controlled by the time it takes for molecules 
to diffuse to the surface, and, approximately, 

M,(t) = Illr,exp(-Dt/R2). [lOI 
when the surface is an inefficient relaxation agent, pR / D 4 1, the magnetization is 
described by 

W(t) = M0exp(-pt(SIV)), [Ill 
where (S/V) is the surface to volume ratio of the pore; in the approximation that the 
pore is spherical, S/V = 3 /R . 

The parameter p can be different for longitudinal and transverse relaxation, giving 
rise to different relaxation parameters p, and p2. On the basis of a study of many 
rocks, Kenyon et al. (6) have concluded that Eq. [ 1 l] is applicable for T, processes. 
We assume that the same is true for T2 processes. 

Acting in parallel with the wall relaxation mechanism is the normal bulk liquid 
relaxation process, with transverse relaxation time T2,, . If the pore fluid is water, this 
contribution is normally insignificant. When the pore fluid is a viscous oil (22)) or a 
solution with a high density of paramagnetic ions, bulk relaxation mechanisms may 
dominate. 

Pore size distribution. A number of groups have used NMR relaxation data to 
determine the pore size distribution of rocks. Kenyon et al. (6) pointed out that the 
observed stretched exponential decay of longitudinal magnetization can arise from a 
population of pores of various sizes, the spins in each pore relaxing according to Eq. 
[ 111. In an obvious extension to the work of Kenyon et al., we may write 

exp( -(kr) x didRexp( -(er”Pm’)exp( -(%l)). [12] 

Measurements on more than 100 water-filled rocks showed that (Y is generally around 
2/3. Therefore, the pore size distribution can be presumed to be Gaussian, 

, ]131 

where R. is a characteristic length scale. P(R) is the volumetric probability density; 
i.e., it is the volume of the population of pores having radius R . Thus the total pore 
volume is given by 

V=cdmdRexp(-(f-)2), ]141 

where c is a constant having dimensions of length squared. 
Unified equation for transverse relaxation. We can now describe transverse relax- 

ation in a rock having a distribution of pore sizes and associated distribution of sur- 
face and diffusion-related relaxation rates. When a relaxation mechanism operates in 
parallel with and is independent of other relaxation processes, as is the case with 
bulk relaxation, then the relaxation rates are additive. Robertson (14) showed that 
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diffusion-related and surface relaxation are also independent to second order so that, 
within a single pore, the resulting relaxation rates may be added. 

However, the decay processes are functions of the pore size, giving rise to a decay 
of transverse magnetization which will be nonexponential. Hence it is necessary to 
calculate M(t) explicitly as the sum of magnetization from the distribution of pores 
and find T2 from the resulting decay curve. 

With these points in mind, we combine Eqs. [ 81, [ 91, [ 111, and [ 133 to find 

,(~)=~0~-~Rexp(-(~)‘)exp(-~~)exp(-&~)exp[-2’2~R4t 

G(a;Ca;-2))(1 - 
3 - 4 exp( -a/2) + exp( -a) 

a )I9 a=-. 1151 

The complexity of the argument of the fourth exponential function of this equation 
makes analytical solution difficult. The equation was therefore solved numerically, 
the integral being evaluated using an adaptive Romberg extrapolation algorithm as 
embodied in a commercially available computer subroutine (23). The sum usually 
converges to one part in 1 O4 in a few terms. T2 was determined from Eq. [ 15 ] by the 
condition M( T2) = i&/e, which is consistent with Eq. [ 11. 

We will compare the predictions of Eq. [ 151 with a formulation that accounts for 
the effect of a distribution of pore sizes on the surface relaxation rate and magnetic 
field gradient, but allows for unrestricted diffusion. The appropriate equation is 

iI61 

Selection ofparameters. The transverse relaxation rate of Leuders limestone, mea- 
sured as a function of B0 and tcp, showed the largest departure from the predictions 
of the Carr-Purcell theory, Eq. [ 21, Therefore, it provides the best example of the 
applicability of the new theory, Eq. [ 15 1. The material constants which enter into 
Eq. [ 15 ] are the characteristic pore size, R,,; the magnetic susceptibility contrast be- 
tween the grains and the pore fluid, Ax; the surface relaxation parameter, p2 ; the 
diffusion constant of the pore fluid, D; and the fluid bulk relaxation time, T2,. We 
have either independently measured or used published values for all of these except 
p2, which is difficult to determine separately. 

The pore size distribution of the Leuders limestone was measured by mercury in- 
jection porosimetry (Micromeritics Autopore II porosimeter) which gives an indica- 
tion of the size of restricting throat associated with the pore into which the mercury 
intrudes. Thus, the radius measured bears only an approximate relationship to the 
pore radius, the correspondence depending on the exact pore geometry. The pressure 
at which mercury had intruded into one-half of the total pore volume was 1.62 MPa 
(235 psi). Using the standard equations of mercury porosimetry (24)) this implies a 
median pore radius, R,, of 0.45 pm. 

The relationship between R, and RO of a Gaussian distribution is expressed by 



RELAXATION IN POROUS ROCK 17 

FIG. 2. Transverse relaxation rate of Leuders limestone as a function of the time between the 90” pulse 
and the first 180’ pulse in a Cat-r-Purcell pulse train. Symbols as in Fig. I. The three solid curves are the 
restricted diffusion theory for the same three frequencies. The parameters used were Ra = 2 pm, Ax = 75 
X 10e6, and pz = 1.6 X 10m6 m s-r. The three dashed curves are the predictions ofthe unrestricted diffusion 
theory, using the same parameter set. 

i J: dR wN-(R/&d*) -= 
2 Jr dR ew(-(R/Rd2) 

1171 

with the result that R0 = R,/0.475. Hence the mercury porosimetry measurement 
givesR,, = 0.96 pm. 

The measured relaxation time of the water used to saturate the rocks was Tzb = 3 s 
at 40°C. The diffusion coefficient of water at 40°C measured by NMR techniques 
(25), isD = 3.14 X 10e9 m2 s-l. 

The magnetic susceptibility required for Eq. [ 93 is the volume magnetic suscepti- 
bility, xv, defined by 

B = PO&( 1 + xv). 1181 
Its value for water is -9.26 X 1O-6 in S.I. units. Many rocks have significant content 
of paramagnetic ions which dominate their magnetic properties. The grain mass sus- 
ceptibility of Leuders limestone was measured using a Gouy balance to be 3.0 X 10e9 
m3 kg-‘. The grain density is 2.7 1 X lo3 kg rne3, so the volume susceptibility is 8.1 
X 10e6. Ax is then 17 X 10d6. 
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To our knowledge there are no published data on the grain-surface transverse relax- 
ation parameter, p2, in rocks. Moreover, the microscopic mechanism controlling p2 
is unknown. We assume that p2 is independent of Larmor frequency, and its value is 
allowed to be a variable parameter. 

RESULTS 

Equation [ 15 ] was used to calculate transverse relaxation rates as a function of 
Cat-r-Purcell pulse spacing for proton resonance frequencies of 5, 40, and 90 MHz. 
The results are shown as solid curves in Fig. 2. At the lowest values of 1,, and static 
field strength, 1 / T2 is dominated by grain-surface relaxation, as expected. At higher 
values of tcp and field, the effects of diffusion in a field gradient become apparent. 
However, these effects saturate at the largest values of tcp. Clearly, this indicates the 
inability of the spins to experience arbitrarily large changes in their precession fre- 
quency between the 180” pulses in the Carr-Purcell sequence. 

The experimentally determined transverse relaxation rates of Leuders limestone 
for the same three frequencies are shown as points in Fig. 2. The restricted diffusion 
theory generally follows the experimental data points. The exception is at the longest 
value of tcp ( 1.8 ms), where the theory underestimates 1 / T2. The effect of unre- 
stricted diffusion, calculated using Eq. [ 16 1, is shown as dashed lines. 

The parameters used to calculate the theoretical curves differ somewhat from their 
estimates. The Gaussian pore size parameter is 2 pm rather than 1 pm. Also, it was 
found that Ax had to be increased from 17 X 10e6 to 75 X lop6 in order to obtain a 
match with the experimental data. The value of p2 was found to be 16 X 1 Oe6 m s-‘. 
The difference between 1 and 2 pm in a mercury injection determination of pore size 
is insignificant. It is likely that the discrepancy between the measured and fitted values 
of Ax results from the crudeness of our model for the magnetic field gradient in the 
pore space of the rock; we consider this to be the most serious deficiency of the theory. 
The value of p2 obtained is comparable to the value of pI deduced by Kenyon et al. 
(26) at an operating frequency of 10 MHz. 
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