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Permeability relation with other petrophysical parameters
for periodic porous media

Keh-Jim Dunn∗, Gerald A. LaTorraca∗, and David J. Bergman‡

ABSTRACT

We modeled permeability (k) estimation based on
porosity (φ), electrical formation factor (F), and nuclear
magnetic resonance (NMR) relaxation time (T), using
periodic structures of touching and overlapping spheres.
The formation factors for these systems were calculated
using the theory of bounds of bulk effective conductiv-
ity for a two-component composite. The model allowed
variations in grain consolidation (degree of overlap),
scaling (grain size), and NMR surface relaxivity. The cor-
relation of the permeability (k) with the predictor aTbFc

was slightly higher than aTbφc (i.e., a correlation coeffi-
cient of 0.98 versus 0.95). The exponent b ranged from
1.4 for a pure grain consolidation system to 2 for a pure
scaling system. Variations in surface relaxivity are shown
to cause significant scatter in the correlations.

INTRODUCTION

The permeability of a subsurface formation is a very im-
portant parameter in the petroleum industry for estimating
producible hydrocarbon. Continuous direct measurements of
permeability in boreholes is currently impractical. Conse-
quently, well log measurements of other petrophysical param-
eters (porosity, formation factor, nuclear magnetic resonance
(NMR) relaxation times, mineral compositions, Stoneley wave
attenuation, etc.) are used to estimate permeability (Timur,
1969; Herron, 1987; Kenyon et al., 1988; Sen et al., 1990; Tang
et al., 1998). These estimations are based largely on empirical
correlations.

Permeability has been empirically correlated with porosity,
formation factor, and surface-to-volume ratio, assuming that
permeability is controlled by pore volume, pore throat size,
and surface area (Walsh and Brace, 1984; Johnson et al., 1986;
Katz and Thompson, 1986; Blair et al., 1996). Although vari-
ous aspects have been studied to help understand the physics
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of the transport properties of rocks, the primary goal has been
to estimate permeability from logs (Brown, 1972). NMR log
measurements have been used extensively to predict perme-
ability, assuming that the dominant NMR relaxation time of
fluid-saturated rocks is related to the surface-to-volume ra-
tio of the pore space. It is the purpose of the present pa-
per to re-examine these correlations for permeability using
periodic structures where all the necessary parameters can be
calculated.

Two commonly used correlation schemes are k = aTbFc and
k = aTbφc, where k is the permeability, T the NMR relaxation
time, φ the porosity, andF the formation factor. The fitting con-
stants (a, b, and c) are often empirically determined from core
measurements. However, few attempts have been made to un-
derstand the physical meaning of these fitting constants, what
properties of the rocks affect them, or if there is a fundamen-
tal relationship between these parameters. The periodic arrays
of identical spheres offer a unique opportunity for such an in-
vestigation, because all the petrophysical quantities in the cor-
relations (i.e., permeability, porosity, formation factor, NMR
relaxation times, etc.) can be computed with high accuracy.
Thus, these empirical formulas can be studied theoretically
with controlled variation of the affecting factors. We varied
the size scale, the surface relaxation strength, and the degree
of consolidation, and computed their effects on the empirical
formulas for the permeability.

We considered periodic porous systems of simple cubic (sc),
body-centered cubic (bcc), and face-centered cubic (fcc) ar-
rays of touching and overlapping spheres. The computation of
porosity for these structures is based on a simple geometric con-
sideration. The formation factor is calculated using a method
proposed by Bergman and Dunn (1992). The NMR relaxation
time for most clastics is given by Vp/(ρS), where Vp is the vol-
ume of the pore space, S is the surface area of the pore-matrix
interface, and ρ is the surface relaxation strength. The values
of permeability are taken from Larson and Higdon (1988).

Our paper is organized as follows. The next section reviews
the calculation of a formation factor. The third section discusses
various schemes of correlating these theoretically computed
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petrophysical parameters. Section four uses real rock data for
the analysis. Section five summarizes our present findings.

COMPUTATION OF FORMATION FACTOR

We used the method of Bergman and Dunn (1992) to com-
pute the formation factor for periodic porous media. We calcu-
lated moments of the pole spectrum of a two-component com-
posite to produce a continued fraction expansion for the bulk
effective dielectric constant or electrical conductivity. Then, we
used the rigorous bounds for the bulk effective conductivity to
determine the formation factor for the composite. A more de-
tailed discussion of the computation method is given in the
Appendix.

The upper and lower bounds of the bulk effective conduc-
tivity for the composite usually converge very quickly, as the
number of moments used in the calculation increases, to nearly
the same value when the conductivity contrast between the
two components of the composite is small. When the conducti-
vity contrast becomes large, such as the case for computing
the formation factor, the two bounds diverge from each other.
However, the lower bound converges to the true bulk effec-
tive conductivity for the composite. This is corroborated by
computing the bulk effective conductivity of the same com-
posite by switching the values of conductivity of the matrix
and pore space, as discussed in the Appendix. Recent work
of Helsing (1996) and Cheng and Greengard (1997) have also
dealt with similar problems of computing electrostatic fields of
two-component composites, but with different approaches.

The formation factors we computed for three different pe-
riodic structures (simple cubic, body-centered cubic, and face-
centered cubic arrays for identical touching and overlapping
spheres) are shown in Figure 1. We found results of our
calculation are quite consistent with those of Schwartz and
Kimminau (1987), who used the network simulation and mini-
mum area approximation approaches. The formation factors
calculated by Shen et al. (1990) tend to be smaller at low
porosity values. This is because they used a Fourier expansion

FIG. 1. Formation factor as functions of porosity for sc, bcc, and
fcc periodic structures of identical touching and overlapping
spheres.

method with only N = 1 in the reciprocal space (N is a measure
of the size of the reciprocal space over which the Fourier expan-
sion is carried out; see the Appendix). The convergence of the
Fourier expansion method has been shown to be reasonably
fast for porosities where spheres just touch or slightly overlap
with each other, but becomes quite slow for lower porosities
where many higher order Fourier expansion terms are needed
(Bergman and Dunn, 1995a). Our present calculation used a
Fourier expansion with N up to 21 in the reciprocal space.

PERMEABILITY FOR PERIODIC POROUS MEDIA

Theoretical computation of the permeability of periodic
porous media has been studied extensively in the past using
spherical harmonics (Hasimoto, 1959; Zick and Homsy, 1982;
Sangani and Acrivos, 1982; Larson and Higdon, 1988). Here,
we use Larson and Higdon’s (1988) results for our analysis.
Table 1 shows the results from Larson and Higdon, along with
our calculation of formation factor and NMR relaxation times.
The friction coefficient K , given by Larson and Higdon,

K = f

6πµRU
(1)

is a dimensionless quantity, where f is the force on a single
inclusion, µ is the fluid viscosity, R is the radius of the sphere,
and U is the superficial or average velocity through the lattice.
The permeability k is defined by

k ≡ µU V0

f
= V0

6π RK
, (2)

where V0 is the total volume per inclusion. The permeability
defined in this way has dimensions of (length)2. In Table 1, we
show values of the dimensionless permeability k/d2, where d
is the edge length of the cubic unit cell of the Bravais lattice.
The values quoted from Larson and Higdon include only those
for touching and overlapping spheres and exclude those with
very small porosities where the corresponding permeabilities
are less than 0.1 md for d = 10 µm.

We calculated NMR relaxation times assuming that surface
relaxation is the dominant mechanism for polarization de-
cay and that bulk relaxation can be ignored. The dominant
NMR relaxation rate in the porous medium has been shown
(Brownstein, and Tarr, 1979; Mitra and Sen, 1992; Bergman
and Dunn, 1995a) to be equal to ρS/Vp when ρd/D is small
(i.e., the fast diffusion regime), and D is the diffusion constant
for water. Hence, the dominant NMR relaxation time is cal-
culated as Vp/ρS and shown in Table 1 as T1. We computed
these T1 values (in milliseconds) assuming a surface relaxation
strength ρ = 10−3 cm/s and evaluating Vp and Sdirectly for the
case of d = 10 µm. Here, we do not make the distinction be-
tween the longitudinal relaxation time T1 (for which ρ1 should
be used) and the transverse relaxation time T2 (for which ρ2

should be used) (Kleinberg et al., 1994). In general, as the Lar-
mor frequency gets lower, T2 is quite close to T1, except that T2

may be diffusionally shortened by induced internal field gradi-
ents or an externally applied field gradient. The strength of the
induced internal gradients depends on the magnetic suscep-
tibility contrast between solid and pore fluid (Bergman and
Dunn, 1995b).

Figure 2 shows the permeability as a function of porosity for
sc, bcc, and fcc sphere arrays, where we have also included large
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porosity values for which the spheres do not touch. Evidently,
porosity alone is not a very good parameter for characterizing
the permeability because the points arising from the different
structures do not lie on a single curve, even in regions of high
porosity, where they exhibit the same power law dependence
on φ.

Figure 3 shows the result of using the form aTbφc to rep-
resent permeability. Here, we have included only porosities
for which the spheres are touching or overlapping. The per-
meability is computed using an edge length for the Bravais
lattice of 10 µm. The fitting constants are a = 1.024, b= 1.404,
and c= 2.139, with a correlation coefficient r 2 = 0.942. Note
that the data sets we used are different packings of identi-
cal spheres where we achieved the porosity reduction by in-
creasing the amount of overlap between neighboring spheres.
This grain consolidation process reduces permeability and pro-
vides the dynamic range for the permeability shown in Figure 3.
However, such a dynamic range for permeability can also be
achieved at a fixed porosity by simply varying the overall size
scale. In the latter case, the permeability would simply vary as
the square of the length scale.

Figure 4 shows the results of such a change of size scale
where the data sets include those of Figure 3 and the scaled
data sets for edge lengths 30, 60, and 100 µm. Using the
same functional form, aTbφc, the fitting constants now become
a = 0.120, b= 1.853, and c= 1.833, with a correlation coeffi-
cient r 2 = 0.952. Notice that the constant b changes from 1.404
to 1.853, from pure grain consolidation to both grain consoli-

Table 1. Theoretically computed permeability from Larson and Higdon (1988) with the T1 and the formation factor FF for simple
cubic, body-centered, and face-centered arrays of identical touching and overlapping spheres for different porosities from this work.

φ Concentration Friction Coefficient Permeability* k/d2 T1 F
Simple Cubic

0.4726 0.5236 41.99 2.5269 × 10−3 151.64 2.907
0.47 0.53 43.60 2.4237 × 10−3 150.22 2.98
0.45 0.55 48.80 2.1380 × 10−3 145.80 3.21
0.40 0.60 66.10 1.5288 × 10−3 134.73 3.88
0.35 0.65 93.36 1.0480 × 10−3 123.61 4.75
0.30 0.70 139.8 6.7718 × 10−4 112.34 5.96
0.25 0.75 228.3 4.0080 × 10−4 100.79 7.76
0.20 0.80 426.9 2.0681 × 10−4 88.82 10.73
0.15 0.85 1.020 × 103 8.3276 × 10−4 76.18 16.65
0.10 0.90 4.29 × 103 1.8951 × 10−5 62.57 32.73
0.08 0.92 1.20 × 104 6.6396 × 10−6 56.81 51.09
0.06 0.94 5.726 × 104 1.3599 × 10−6 51.02 109

Body-Centered Cubic
0.31982 0.68018 162.3 3.7675 × 10−4 67.87 4.60
0.30 0.70 191.0 3.1761 × 10−4 64.96 5.07
0.25 0.75 299.2 1.9772 × 10−4 57.34 6.52
0.20 0.80 520.5 1.1072 × 10−4 49.22 8.67
0.15 0.85 1.073 × 103 5.2253 × 10−5 40.34 12.29
0.10 0.90 3.05 × 103 1.7846 × 10−5 30.23 19.80
0.08 0.92 5.47 × 103 9.8253 × 10−6 25.66 25.62
0.06 0.94 1.14 × 104 4.6519 × 10−6 20.67 37.22
0.04 0.96 3.2 × 104 1.6325 × 10−6 16.91 86.42

Face-Centered Cubic
0.25952 0.74048 431.0 8.7038 × 10−5 41.30 6.25
0.25 0.75 480.0 7.7816 × 10−5 40.49 6.67
0.20 0.80 426.9 3.9916 × 10−5 36.08 9.67
0.15 0.85 913.8 1.6077 × 10−5 31.37 15.28
0.10 0.90 2.21 × 103 3.6879 × 10−6 26.27 31.33
0.08 0.92 9.34 × 103 1.3694 × 10−6 24.17 52.49

∗The permeability is in dimensionless units. In order to get its value in md (millidarcys), the dimensionless value should be multiplied
by d2, where d is the unit cell size in µm (1 md = 0.987 × 10−3µm2).

dation and scale change. In the functional form aTbφc, T is the
only parameter that depends on the length scale (T is simply
proportional to that scale). If the permeability changes were
entirely due to the scale change, the exponent for T would be
exactly 2. Naturally, the b value for the pure consolidation case
depends on our model for the periodic structures. The b value
for the real rock systems may be different. However, this exer-
cise elucidates how the grain consolidation and the size scaling
affect the value of the exponent b.

Kenyon et al. (1988) and Banavar and Schwartz (1987) used
a = 1.0, b= 2.0, and c= 4.0. Figure 5 shows that for these con-
stants, the correlation coefficient r 2 becomes 0.913, and the
correlation is not as good as that shown in Figure 4, especially
at the higher permeabilities. Comparing Figure 5 with Figure 4,
the change in the exponent c seems quite significant. In fact,
such a large change is tolerated because the correlation coeffi-
cient is only decreased very slightly: the reduction in the factor
φc by increasing c is mostly offset by the modest increase of the
exponent b in Tb. This shows that T and φ are not independent
parameters in characterizing the permeability.

So far, we have assumed a constant surface relaxivity
ρ = 10 µm/s in our calculation. For real rocks, values of ρ range
from 10 to 1 µm/s (Kenyon et al., 1988; Kleinberg et al., 1994).
Figure 6 shows the results of varying ρ where we use the result
of Figure 3 for a unit cell edge length of 10 µm but with surface
relaxation strength ranging from 10 to 1 µm/sec. Since there
is no scale change, the permeability value remains the same
as the surface relaxivity changes. This broadens the range of
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scatter even in the high permeability case, where our model
showed very good data collapse when ρ is constant and small.
Hence, we propose that in clastic sediments the breadth of scat-
ter of the permeability data in the high-permeability regime
is caused mainly by the wide range of values for the surface
relaxivity.

Figure 7 shows the results when we take the data set of
Figure 3 (i.e., the pure grain consolidation system) and plot
permeability versus aTbFc instead of versus aTbφc. Figure 8
shows the results when we also include the size scaling effect,
with the edge lengths of 10, 30, 60, and 100 µm. The calculated

FIG. 2. Permeability as functions of porosity for periodic
structures of sc, bcc, and fcc where we have included very
high porosities where the spheres are not touching. The edge
length of the Bravais lattice is 10 µm. Permeability is in
millidarcys, where 1 md = 0.987 × 10−11 cm2.

FIG. 3. Permeability versus aTbφc for periodic structures of
sc, bcc, and fcc using only porosities where the spheres are
touching or overlapping. The edge length of the Bravais lattice
is 10 µm. The fitting constants are a = 1.024, b = 1.404, and
c = 2.139, with a correlation coefficient r 2 = 0.94.

exponents b and c in Figures 7 and 8 are quite consistent with
those calculated in Figures 3 and 4 (where aTbφc is used) if we
apply the relation F ≈ φ−1.5 (as observed in Figure 1 for large
porosities). However, the use of formation factor F instead
of porosity φ significantly increases the correlation with per-
meability data. This is quite evident when comparing Figures 4
and 8 in the low permeability region, where data scatter is much
less when aTbFc is used.

The concept of using the formation factor to correlate per-
meability is not new. Walsh and Brace’s (1984) simple model of
considering flow in a rock as a flow through a bundle of tubes

FIG. 4. Permeability versus aTbφc for periodic structures of sc,
bcc, and fcc using the data from Figure 3 (i.e., 10 µm) and the
scaled data sets for 30, 60, and 100 µm. The length scale refers to
the edge length of the Bravais lattice used in the computation.
The fitting constants are a = 0.120, b = 1.853, and c = 1.833,
with a correlation coefficient r 2 = 0.95.

FIG. 5. Permeability versus aTbφc for periodic structures of sc,
bcc, and fcc using the data from Figure 4 but with fixed constants
a = 1.0, b = 2.0, and c = 4.0. The correlation coefficient now
becomes r 2 = 0.91.
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yielded the permeability

k = (1 / b)φ3(V / As)2(1 /F), (3)

where b is a shape factor, As/V is the surface area per unit
volume, and F is the formation factor. Katz and Thompson
(1986), on the basis of a percolation argument, and Johnson
et al. (1986), on the basis of the analogy between electrical and
hydraulic conductions in porous media, proposed the following
relationship:

k ∼ L2/F = L2φm, (4)

where L is either the critical pore diameter in the mercury
porosimetry measurements or the characteristic length in the
electrical conduction for the porous medium. Blair et al. (1996)
summarize the discussion on this subject in great detail.

FIG. 6. Permeability versus aTbφc for periodic structures of sc,
bcc, and fcc with the surface relaxation strength ρ ranging from
0.001 to 0.0001 cm/s.

FIG. 7. Permeability versus aTbFc for periodic structures of sc,
bcc, and fcc using the data from Figure 3.

We found that using the formation factor in computing the
above described correlations does more than merely replac-
ing φm by 1/F . From Figure 3, different values of m must be
used for different structures when φ decreases below 0.1. This
divergence of values of F corresponds to a similar divergence
of values of the permeability at low permeabilities. Using F as
the characteristic parameter improves collapse of the data in
the low porosity–low permeability regime, as shown in Figures
4 and 8. Although our model demonstrated that in principle
aTbFc is a better choice than aTbφc, in reality, other heterge-
neous factors obscure the slight superiority in its correlation
with the permeability, as discussed in the following section.

DISCUSSION OF REAL ROCK DATA

The real rock data present many heterogeneities and uncon-
trollable factors. The model systems we considered used iden-
tical spheres. To appy the results to real rock data, we need
to determine significant and insignificant differences between
real rocks and our models for the permeability correlations.
We can think of the following:

1) Real rock systems are not identical spheres. They come in
many different shapes and sizes. The packing is random,
disordered, and certainly not periodic. This will signifi-
cantly affect the formation factor, and hence the Archie’s
exponent m. However, we expect that the general rela-
tion such as k ∼ L2/F = L2φm holds for both the real
rock systems and the periodic arrays of spheres, only the
formation factor will be different. Thus, we expect our
conclusion on the scaling effect on the fitting constant,
exponent b, should hold for real rocks excluding other
influencing factors.

2) The real rock systems certainly have different values of
surface relaxation strength ρ. Within the zone probed by
the NMR logging tool, variations in ρ can often be ex-
pected to be minimal. However, at larger scales, ρ can
not be assumed to be constant. Large surface relaxiv-
ity caused by transition metal ions has been known to

FIG. 8. Permeability versus aTbFc for periodic structures of sc,
bcc, and fcc where using the data from Figure 4.
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cause fast NMR relaxation and have very short relax-
ation times. Our conclusion on the variation of surface
relaxavity causing the scattering in permeability cross-
plots is independent of our specific model. Hence, we
believe that in real rock systems the scattering of data in
the crossplots of core permeability with the permeability
estimators is in large part due to the variability of ρ.

3) In our model, we have assumed a single dominant re-
laxation time given by Vp/ρS. In real rock systems, we
expect more than one dominant relaxation time. Usually,
a geometric average of these relaxation times is used for
the permeability correlation. However, depending on the
diffusion coupling between large and small pores, two dif-
ferent length scales can show up either as two dominant
relaxation times or as merged into one relaxation time
(Ramakrishnan et al., 1998). This effect is in fact con-
trolled by the factor ρd/D and, therefore, related to the
variability of ρ. When the ρ becomes too small and the
relaxation time T = Vp/ρS becomes large enough that
the bulk relaxation of water is not negligible, the NMR
relaxation time is no longer inversely proportional to the
surface-to-volume ratio. All these uncertainties disrupt
the correlation of permeability with the predictors aTbφc

and aTbFc.

Figures 9 and 10 show the results for the two correlation
schemes (aTbφc and aTbFc) for permeability of sandstones of
260 core samples from different parts of the world. The NMR
relaxation times are T1G, the geometric averages of T1 over the
distribution of relaxation times of each sample between 1 ms
and 10 s measured at 10 MHz (LaTorraca et al., 1993). The
fact that the exponent b is close to 2 shows that the data are
mainly from rocks of different grain sizes. The large dynamic
range of permeability is caused by size scaling rather than grain
consolidation. This is indeed the case as shown in Figure 11
where, out of 260 data points, only 10 samples have porosity
values below 0.1. Most of the samples have porosity values
between 0.20 and 0.25.

FIG. 9. Permeability versus aTbφc for sandstones of real rock
systems.

The large scatter of data points in these figures is, in our
opinion, due to a large variation in surface relaxation strength
among different samples.

As indicated by the correlation coefficients r 2 in Figures
9 and 10, the correlation scheme of aTbFc is slightly better
than aTbφc, similar to our finding from model calculations in
Figures 4 and 8.

SUMMARY

We have studied the correlation between theoretically com-
puted permeability, porosity, formation factor, and NMR relax-
ation times for periodic porous media of identical touching and
overlapping spheres. Although the systems that we consider
are extremely idealized, this approach has the advantage of
isolating each physical parameter, such as grain consolidation

FIG. 10. Permeability versus aTbFc for sandstones of real rock
systems using the same set of data as in Figure 9.

FIG. 11. Permeability versus φ for sandstones of real rock sys-
tems using the same set of data as in Figure 9.
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(porosity reduction), size scaling (size of the grain), and surface
relaxation strength, and allowing us to study its implication and
effects individually in the various correlation schemes. We have
arrived at the following conclusions:

1) The form aTbFc generally provides slightly better corre-
lation to permeability than aTbφc.

2) The exponent b for the relaxation time T ranges from 1.4
for pure grain consolidation systems to 2 for pure scaling
change systems. Reservoir rocks often have a value near
2, indicating that the changes are due mainly to grain size
change.

3) The scattering of data in the correlation of the permeabil-
ity with the predictors aTbφc and aTbFc appears to be due
mainly to the variation in surface relaxation strength.

4) The form aTbφc is relatively tolerant, especially for some-
what large variation of c. This happens because a large
increase in c can be easily offset by a modest increase in b.
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APPENDIX

MATHEMATICAL PROCEDURE FOR COMPUTING FORMATION FACTOR

We briefly describe below the mathematical procedure for
computing the formation factor of a fluid-saturated porous
medium. For a more detailed description, please refer to
Bergman and Dunn (1992) and related references.

Consider a sample of periodic porous structure made of
solid spheres where the pore space is filled with water. The
sample fills up the entire volume in between the plates of an
infinite parallel-plate capacitor of thickness L with plates per-
pendicular to the z-axis. In order to calculate the bulk effective
dielectric constant of the composite εe or the bulk effective

conductivity σe, we first use an integral equation for the electric
potential φ(r):

φ(r) = z + 1
s
0̂φ, (A-1)

where

s ≡ σw

σw − σm
, (A-2)

0̂φ ≡
∫

dV′θm(r′)∇′G(r, r′) · ∇′φ(r′), (A-3)
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and where σw and σm are the conductivities of water and the
solid matrix, respectively, G(r, r′) is a Green’s function for the
Laplace equation of the electric potential, θm(r′) is the charac-
teristic function which defines the domain of solid matrix, and
0̂ is a linear operator which depends on the microgeometry
of the porous medium through θm(r′). We have assumed the
average electric field is equal to 1. Hence, the first term for the
electric potential is simply equal to z, the coordinate. The 0̂

operator is made self-adjoint by defining the scalar product of
two (scalar) functions as follows:

〈φ | ψ〉 ≡ 1
V

∫
dVθm∇φ∗ · ∇ψ, (A-4)

where V is the total volume under consideration. The bulk
effective conductivity of the composite σe is calculated from

F(s) ≡ 1 − σe

σw

= 1
s
〈z | φ〉 =

〈
z

∣∣∣∣ 1

s − 0̂

∣∣∣∣z〉. (A-5)

Because 0̂ has a complete set of eigenfunctions φn with real
eigenvalues sn,

0̂φn = snφn, (A-6)

Equation (A-5) can be transformed into

F(s) =
∑ Fn

s − sn
, Fn ≡ |〈z | φn〉|2, (A-7)

where the following inequalities are also satisfied:

0 ≤ sn < 1, F(1) ≤ 1,
∑

Fn ≤ 1. (A-8)

Expanding F(s) in powers of 1/s from equation (A-7), we get

F(s) =
∑

Fn

s
+

∑
snFn

s2
+· · ·+

∑
sr −1
n Fn

sr
+· · · · (A-9)

When comparing this to a similar expansion of equation (A-5),
we find that ∑

sr
n Fn = 〈z|0̂r |z〉. (A-10)

For a periodic porous medium, we can expand the eigenfunc-
tions φn in Fourier series, and the operator 0̂ is then represented
by an infinite matrix. The right-hand side of equation (A-10)
can then be evaluated by a sequence of matrix-vector prod-
ucts without ever having to evaluate a matrix-matrix product.

Table A-1. Results for the bounds for the formation factor for a simple cubic array of identical, slightly overlapping spheres with
a porosity φ = 0.47.

s = 1.0001 s = 1.001 s = 1.01

r Bound 1 Bound 2 Bound 1 Bound 2 Bound 1 Bound 2

0 2.13 5301.00 2.13 531.00 2.10 54.00
1 2.69 2733.36 2.69 274.59 2.64 28.71
2 2.85 1026.63 2.85 104.55 2.79 12.32
3 2.92 410.23 2.92 43.29 2.85 6.56
4 2.95 173.20 2.94 19.78 2.88 4.39
5 2.97 73.20 2.96 9.89 2.89 3.50
6 2.97 42.49 2.97 6.86 2.90 3.23
7 2.98 17.70 2.97 4.41 2.90 3.02
8 2.98 12.34 2.97 3.89 2.90 2.97
9 2.98 7.89 2.97 3.45 2.90 2.94

10 2.98 6.60 2.97 3.32 2.90 2.93
11 2.98 5.00 2.97 3.17 2.90 2.92

This permits us to include a very large number of Fourier com-
ponents in the calculation, leading to very large matrices 0̂.
This is necessary in order to ensure good convergence of the
calculation and accurate results for the formation factor.

Using these computed moments as input information, we can
construct a continued fraction expansion for F(s) and obtain a
sequence of successively tighter, converging bounds for F(s).
With the formation factor F defined as

F ≡ lim
σm→0

(
σe

σw

)−1

= 1
1 − F(1)

, (A-11)

similar converging bounds are calculated forF , and the results
are shown in Table A-1.

The calculation involved computation of 20 moments of
F(s), which was carried out using reciprocal lattice vectors
g = (2π/d)(nx, ny, nz), where d is the lattice constant and
nx, ny, nz are integers ranging from −N to +N. We used N = 19
and 21 (two values of N are always used, and the results are then
extrapolated to N = ∞ assuming a linear dependence on 1/N).
Upper and lower bounds (bound 2 and bound 1 in Table A-1)
were calculated using r lowest moments of F(s). Thus the
bounds obtained for r = 0 used only the zero moment

∑
Fn

as input information. As more and more moments are used in
the calculation (i.e., as r increases), the bounds get progres-
sively tighter. When r exceeded 11, we usually encountered a
situation where small errors in the lower moments caused the
continued fraction expansion to terminate (this is discussed
in detail in Bergman and Dunn, 1992). Even before that hap-
pened, the lower bound (bound 1) already seemed to be well
converged with increasing r . A separate calculation carried out
using N = 25 and 27 did not result in significantly better results.
Therefore, in order to reduce computation time, all subsequent
calculations involved only 11 moments using N = 19 and 21.

Notice that the gap between the upper and lower bounds on
the formation factor in Table A-1, obtained using 11 moments,
are within 1% of each other when s= 1.01, which corresponds
to a conductivity ratio σm/σw ≈ 0.01. This means that, at this
porosity and this conductivity ratio, the formation factor can
be accurately determined to within 1%. However, as s gets
closer to 1, the convergence of bound 2 (the upper bound) be-
comes poorer. Already from this behavior, we may conclude
that bound 1 (the lower bound) is closer to the exact result.
The poor convergence of the upper bounds on F(s) and F can



478 Dunn et al.

be understood as follows. When s is close to 1, it means that
the conductivity ratio σm/σw is very small. In that case, if the
pore space is connected, then the bulk effective conductivity
σe is finite and of the same order of magnitude as σw , even
when σm = 0. Consequently, F(1) will be strictly less than 1.
However, by a small change in the microstructure, it is pos-
sible to disconnect the pore space in neighboring unit cells, in
which case we would get σe = 0 and F(1) = 1. This could happen
even though the changes in the series expansion coefficients of
equation (A-9) are very small. That is why the upper bound
on F(1) will always be 1, and the upper bound on F(1.0001)
converges to the correct value very slowly with increasing r .
Because we typically have σm/σw ≈ 10−6, we will always try
to approximate F by using the limiting behavior of its lower
bound for r → ∞ and s → 1. Thus, for φ = 0.47, we deduce
from Table A-1 that F = 2.98.

When the porosity gets smaller, the convergence becomes
progressively poorer and extremely sensitive to the conductiv-
ity ratio. Table A-2 shows the result of the formation factor
calculation for a simple cubic array of identical overlapping
spheres with a porosity of φ = 0.06. As before, we again choose
the lower bound as being closer to the correct value for the
system. This is also corroborated by the following exercise in

Table A-2. Results for the formation factor for a simple cubic array of identical overlapping spheres with a porosity φ = 0.06
calculated at finite reciprocal lattice sizes (N = 19 and 21).

s = 1.0001 s = 1.001 s = 1.01

r Bound 1 Bound 2 Bound 1 Bound 2 Bound 1 Bound 2

0 16.64 9401.00 16.41 941.00 14.43 95.00
1 24.44 8394.13 23.93 840.55 19.80 85.19
2 48.44 8112.86 46.30 812.58 32.22 82.54
3 57.71 7468.02 54.63 748.78 35.80 76.79
4 77.87 7206.04 72.17 723.02 41.93 74.61
5 87.83 6730.79 80.54 676.65 44.31 70.94
6 94.74 6148.49 86.22 620.56 45.74 66.99
7 100.04 5529.18 90.51 561.88 46.73 63.40
8 101.80 4244.28 91.91 443.54 47.03 57.57
9 109.06 4021.10 97.62 423.45 48.12 56.74

10 111.74 3523.57 99.68 379.30 48.47 55.09

which we switch the roles of solid matrix and pore space and
calculate the function

H(t) ≡ 1 − σe

σm
= A

t
+

∑
tn 6 = 0

Hn

t − tn
, (A-12)

where

t = σm

σm − σw

(A-13)

and

A = 1
F = σe

σw

∣∣∣∣
σm=0

= lim
t→0

t H(t). (A-14)

The residue of the pole at t = 0 is just the reciprocal of the for-
mation factor (Korringa, 1984; Korringa and LaTorraca, 1986).
This is a property H(t) must have because the pore space is
connected. Instead of computing t H(t) for t = −0.0001, we cal-
culate the entire pole spectrum for H(t) (not shown here). We
used 11 moments and N = 27 and 29 for the calculation. The
resulting approximant to H(t) has five poles between 0 and 1,
in addition to the percolation (or connectivity) related pole at
t = 0. The formation factor estimated from the pole amplitude
at t = 0 (i.e., 107) is very close to the lower bound shown in
Table A-2.


