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Summary. Borehole measurements of the nuclear magnetic resonance (NMR) properties of rocks have been of interest for many
years, especially for estimating permeability. This paper presents laboratory measurements of the NMR properties of water-
saturated rocks and shows that permeability can be estimated well with expressions of the form ¢*T?2, where Ty is the relaxation
time constant of the longitudinal nuclear magnetization of hydrogen nuclei. Different methods of representing the laboratory-
measured T curves are shown, including a new one called the stretched-exponential representation. An improved method for
estimating T'; parameters from borehole measurements that can be used with either old or new representations is presented.

Introduction

In this paper, we pursue permeability estimation from borehole
NMR* longitudinal relaxation ( 7y) measurements. Many previous
workers!"0 have demonstrated the potential of NMR for this ap-
plication; however, we make closer and more consistent connections
between the components linking permeability and borehole NMR
than have previously been published. These components are ad-
dressed in the three parts that follow.

1. Stretched-exponential representation of laboratory T, meas-
urements. We present the results of laboratory NMR measurements
on approximately 60 water-saturated rocks. We introduce a new
representation for the NMR curve, called the stretched-exponential
representation, that has the practical advantage of having fewer pa-
rameters than the classical two- and three-exponential represen-
tations of NMR measurements. Such representations are important
in reducing the measurement to a few parameters that can be cor-
related to properties of practical importance.

2. Estimation of permeability from laboratory measurements. We
use the data base of 60 rocks from Part 1 to find the best estimator
of permeability from NMR T| measurements. An important result
is that permeability is estimated better by T;2¢* than by Seevers’!
classic estimator T';2¢.

3. Extraction of NMR T parameters from borehole NMR meas-
urements. To apply the correlations of Part 2 to borehole data, we
introduce a new method of extracting the important 7 parameters
from downhole NMR T; measurements; in this method, called
“‘global fitting,”” a model is fitted simultaneously to the set of free
induction decay (FID) waveforms collected for different polarizing
times during a station measurement. We exhibit two suitable models.
Both have the advantage of accommodating some complexities ob-
served in borehole waveforms and verified in a corresponding lab-
oratory measurement. In particular, the observed decay time of the
FID waveforms decreases as the polarizing time decreases.

This paper concentrates on the NMR property T and does not
investigate the parameter called free fluid index (FFI). The reasons
for this emphasis are two-fold. First, T is a more complete meas-
urement, and thus gives a better picture of the potential of NMR
in permeability estimation. Second, FFI is specifically a low-field
measurement, which is much less convenient to measure in the lab-
oratory. Borehole T data can be obtained with existing com-
mercial nuclear magnetic log (NML™) equipment by making
stationary measurements.

*Now at Unocal Science and Technology Div.

*Principles of nuclear magnetic resonance and nuclear magnetism logging are explained
briefly in Appendix A.

Copyright 1988 Society of Petroleum Engineers

622

A key issue in this paper is compact representation—finding ways
to describe accurately the observed behavior with only a small
number of parameters. Representation is an issue in Part 1, dealing
with laboratory T| measurements, because a complete curve must
be described. Part 2 shows that all the representations used here
allow equally good permeability estimation. In Part 3, dealing with
borehole T data, representation is important because of the need
to work around measurement dead-time, and because borehole
measurements in practice have a lower signal-to-noise ratio than
laboratory measurements. Throughout, compactness of a represen-
tation is weighed against its ability to fit the measurements and its
appropriateness for estimating permeability.

" Part 1—Stretched-Exponential Representation

of Laboratory T; Measurements

Laboratory Technique. We measured porosity, permeability, and
NMR T properties on water-saturated sandstone samples from
five oilfield wells in different parts of the world, plus a number
of quarried sandstone samples.

Samples were cut to Hassler collar size—2.0 cm [0.78 in.] in
diameter and approximately 4 cm [1.57 in.] long; the samples were
cored parallel to any visible bedding planes in the original rocks.
Sample porosities were determined by Archimedes’ method—i.e.,
measuring dry sample weight, saturated weight, and buoyant weight
of the water-saturated sample. Permeabilities to water were
measured end-to-end on the samples encased in a Hassler collar,
at room temperature, with a collar pressure in the neighborhood
of 414 kPa [60 psi]. Because our measured permeabilities are thus
for single-phase parallel-to-bedding flow, the final output of our
permeability estimators will be for the same quantity.

Laboratory NMR measurements were made using an IBM/Bruker
PC10. The PC10 is a desk-top permanent magnet instrument that
makes pulsed measurements of proton resonance at 10 MHz [106
cycles/sec]. Samples for NMR measurement were surface-dried and
then wrapped in Saran™ wrap held in place by rubber bands to
reduce evaporation during measurement; these wrapping materials
contributed a negligible signal for the water volumes of our samples.
Before measurement, samples were allowed to equilibrate to the
magnet temperature, which is thermostatically maintained at 40°C
[104°F].

The fundamental NMR property to be measured is the time evo-
lution of proton magnetization along the direction of the applied
magnetic field. This behavior of the *‘longitudinal’’ magnetization
is called T;. We measured T using a standard technique called
““inversion recovery”’’: a resonant radio-frequency pulse is used
to tip the proton magnetization 3.14 rad {180°] away from its equi-
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librium position, to the direction antiparallel to the applied field
of the permanent magnet, where the magnetization gradually reverts
back to its equilibrium state. The amount of longitudinal magneti-
zation is measured at various times ¢, by applying a 1.57-rad [90°]
pulse to tip the net proton magnetization into the transverse plane,
where it precesses in the applied magnetic field. The precession
induces an oscillating voltage in the radio-frequency coil called the
FID waveform, whose amplitude is measured.

To obtain a detailed measurement of the T behavior, 35 values
of t,—from 35x1079% to 21 seconds with approximately equal
logarithmic spacing—were used. The resultant sequence of 35 am-
plitude values is denoted by M (¢) in subsequent sections. Fol-
lowing each FID measurement, a delay time of at least 15 seconds
allowed magnetization to return to equilibrium in the longitudinal
direction. Depending on sample porosity, measurements were dupli-
cated a number of times (typically 9 or 16) and averaged to reduce
the effect of measurement noise. Under these conditions, a full in-
version recovery curve can be measured in about 1% hours.

Laboratory measurements emulating a borehole NML meas-
urement (as discussed in Part 3) were made with a Carr-Purcell-
Meiboom-Gill” pulse sequence with very close pulse spacing to
reduce as much as possible the effects of magnetic field gradients
in the sample.

The 1.57- and 3.14-rad [90° and 180°] pulses were set indepen-
dently for each sample by applying a pulse sequence containing a
closely spaced train of such pulses and adjusting for maximum am-
plitude of the resultant signal train over the longest possible time.

All samples were measured using the same procedures for in-
strument alignment, sample preparation, pulse sequences, and the
set of ¢, values to facilitate sample-to-sample comparisons.

Fitting Models to Ty Measurements on Rocks. We fitted three
different models to the measured rock 7T; behavior for each
sample: the new ‘‘stretched exponential’’ representation,

My (t)=Moe~ '),

which is discussed more fully in the next section; the classic! two-
exponential representation,

Mpt)y= ¥ Mge "'Ti, N=2;

i=1.N

and the classic three-exponential representation,

Mi(t)= L Mgye T, N=3.

i=1,N

Fitting procedures are outlined in Appendix B. We did not sub-
tract the bulk 7 decay time of water (which is approximately 3.5
seconds at the temperature of measurement) because in most cases
it constitutes a negligible fraction of the decay.

Fig. 1 shows an example—a 7T measurement on a water-
saturated sample of Berea sandstone (Berea 100 in Table 1), along
with stretched-exponential and two-exponential fits. A logarithmic
time axis is used to show the details at both very short and very
long times.

Table 1 shows the results of fitting the three models to the meas-
urements. The three-exponential model gives the best fit (least-
squares error), as expected, because of its large number of param-
eters. Of the other two models, the stretched-exponential model
gives a smaller fit error on about two-thirds of the sandstones we
measured, while the two-exponential model gives smaller fit error
on the remaining one-third.

The stretched-exponential representation has a significant prac-
tical advantage over the two-exponential because it represents the
laboratory data at least as well, with one less parameter; in addition,
the stretch parameter « of water-saturated rocks covers a rather
small range of about 0.5 to 0.7. This advantage can be assessed
in Table 1, which contains both representations. The stretched-
exponential representation makes it much easier to keep the data
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Fig. 1—Inversion recovery measurement of T, on a water-
saturated sample of Berea 100 (crosses) along with two-
exponential (dashed line) and stretched-exponential (solid-
line) fitted curves.

in one’s mind and to examine correlations with other data
graphically.

In the next section, we examine the mathematical and physical
basis for the stretched-exponential representation and argue that it
has a more natural physical basis than a two- or three- (or n-) ex-
ponential representation.

The Stretched-Exponential Form. We make the assumption (which
we will use throughout) that the longitudinal magnetization M (1)
can be written as a superposition of single-exponential decays,

0
Mp)el drVplrpe ™8T, oo )
0

where Vp (7)) is the distribution of decay-time constants; i.e., the
number of nuclei with relaxation time 7;.

The chief result of Appendix C is that Eq. 1 yields the stretched-
exponential form,

M (1) =My e~ WTi)* if Vp(r))oce =01/ ™%,

The important feature of ¥p () in producing stretched-exponential
behavior is its decreasing nature at large 7;. The value of the
stretch exponent « is determined by the rate at which Vp(7{)
decreases. The details of Vp(7;) at values of 7y much smaller than
the observation time are unimportant.

As a particularly important example, a stretch exponent a=2%
arises from a Gaussian distribution of relaxation times; i.e. if

Vp(rxe /o7,
then

M(t)=Mp-e —(tiTy)*
and

Ty, =20/3%.

This example conveniently illustrates that T, is proportional to
the factor ¢ by which the relaxation time constant 7y is scaled. This
example is important because most water-saturated sandstones have
« values between 0.55 and 0.7, not far from the value of two-thirds
corresponding to Gaussian Vp (7)) (sec Table 1).

Fig. 2 schematically contrasts the smoothness of such a Vp(7;)
vs. a two-spike Vp(ry) that is equivalent to a two-exponential
representation. We will argue that such smooth distributions are
physically more reasonable than spiky distributions in water-
saturated rocks, but first, it is convenient to provide some back-
ground material. 1-5:8-10
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TABLE 1—STRETCHED-, TWO- AND THREE-EXPONENTIAL MODELS
FITTED TO LABORATORY T, MEASUREMENTS
Stretched Two-Exponential
T

¢ Kk T P2 ” T,
Sample (%) (md) {msec) o Lo, (msec) (msec) Ti2
A1 31.2 2719 166.0 0.60 0.407 30.0 373.0 122
A2 30.4 1382 190.0 0.63 0.366 33.0 3740 114
A3 24.8 3.3 340 052 0604 - 100 168.0 164
A4 285 215 183.0 0.5 0.366 27.0 371.0 138
A5 33.0 151 147.0 0.60 0.395 26.0 319.0 123
A6 31.0 426 198.0 0.61 0.363 31.0 393.0 126
B1 30.3 1072 203.0 0.68 0.265 27.0 3140 118
B2 9.2 0.012 37.0 0.61 0.645 15.0 159.0 105
B3 22.0 @ 321 710 0.66 0.367 15.0 134.0 8.9
B4 228 83.2 117.0 0.65 0.331 20.0 208.0 106
B5 20.4 4.56 49.0 0.61 0.369 9.0 98.0 11.0
C1 19.0 311 208.0 0.70 0.334 43.0 362.0 8.4
Cc2 18.6 7.47 60.0 0.73 0418 19.0 115.0 6.1
C3 20.9 20.5 110.0 0.72 0.391 30.0 207.0 6.9
Ca 21.7 525 1120 0.73 0.380 31.0 205.0 6.7
C5 14.8 4.17 67.0 0.73 0.499 25.0 152.0 6.1
C6 17.6 10.9 139.0 0.65 0.431 34.0 310.0 9.2
D1 11.3 4.5 63.0 0.56 0.343 8.0 1240 153
D2 11.0 3 55.0 0.54 0.319 6.0 1050 18.7
D3 101 2.8 15.0 062 0.437 4.0 35.0 9.3
D4 104 3.4 140 0.62 0.437 40 . 330 9.2
D5 13.7 2.1 53.0 0.67 0.523 18.0 138.0 7.6
D6 12.8 1.3 480 0.65 0.492 15.0 122.0 8.1
D7 12.2 7.3 21.0 0.65 0.420 5.0 45.0 8.2
D8 1.7 4.8 20.0 0.65 0.400 5.0 43.0 8.7
E1 17.2 91.9 165.0 0.70 0.306 28.0 256.0 9.2
E2 16.7 190.4 222.0 060 0.303 24.0 387.0 16.3
E3 18.6 4249 262.0 0.65 0.281 32.0 425.0 135
E4 183 2703 242.0 0.62 0.291 25.0 408.0 161
E5 16.3 1373 190.0 059 0.310 19.0 3410 175
E6 15.6 28.5 138.0 0.62 0.304 17.0 238.0 13.6
E7 17.2 2005 278.0 0.63 0.298 33.0 4740 14.6
E8 16.4 36.5 157.0 0.64 0.298 20.0 265.0 132
E9 18.3 243.2 2040 071 0.247 29.0 301.0 104
E10 18.1  337.3 137.0 4.65 0.331 23.0 2440 10.6
Et1 14.9 39.9 203.0 .57 0.306 18.0 363.0 20.2
E12 14.9 64.6 183.0 0.56 0.326 18.0 3450 19.7
E13 19.6 669.5 2950 0.66 0.239 28.0 435.0 15.6
E14 18.3 5405 3340 0.68 0.237 37.0 490.0 134
E15 18.8 890.4 4970 0.67 0.218 41.0 701.0 16.9
E16 17.8  429.8 314.0 0.60 0.279 26.0 518.0 19.8
F1 16.1 0.011 15.0 0.62 0.486 5.0 39.0 8.6
F2 18.0 0.52 13.0 0.66 0.514 5.0 35.0 7.4
F3 16.6 0.52 140 0.68 0.525 5.0 38.0 6.9
F4 16.1 0.087 20.0 0.57 0410 4.0 48.0 121
F5 17.2 12.1 150.0 0.65 0.297 21.0 252.0 123
F6 225 5.97 61.0 064 0.332 10.0 109.0 105
F7 19.6 1.72 27.0 0.64 0.296 4.0 47.0 114
F8 12.7 0.063 21.0 0.62 0.388 5.0 46.0 10.1
F9 15.2 0.93 58.0 0.62 0.448 14.0 136.0 9.5
F10 19.1 20.3 67.0 0.54 0.294 5.0 122.0 238
F11 14.8 4.72 43.0 0.52 0.342 4.0 91.0 205
Berea 100 20.5 45 2140 0.63 0.335 32.0 392.0 122
Berea 100 repeat 20.5 45 211.0 0.63 0.340 33.0 392.0 120
Berea 200 239 683 358.0 0.64 0.266 34.0 566.0 16.5
Berea 300 23.8 591 361.0 0.65 0.27 41.0 573.0 140
Berea 400 229 511 359.0 0.62 0.270 33.0 573.0 175
Berea 500 21.6 478 416.0 0.62 0.285 41.0 687.0 16.6
Berea 600 222 131 3320 0.59 0.318 35.0 603.0 17.2
Fontainebleau A 22.3 1305 2267.0 0.69 0.130 41.0 24640 60.3
Fontainebleau B 16.8 621 1689.0 0.63 0.170 40.0 1992.0 495
Fontainebleau C 6.3 10.4 572.0 0.48 0.349 35.0 1186.0 334
Massilon light 246 1425 581.0 059 0.276 45.0 943.0 211
Massilon 24.3 2590 571.0 0.62 0.262 47.0 894.0 189
Portland sandstone 20.0 0.849 13.0 0.61 0.385 3.0 28.0 9.9
Bandera 219 6 51.0 0.63 0.316 8.0 89.0 113
Nugget 6.3 0.003 21.0 0.54 0.454 5.0 57.0 125
Lueders limestone 19.8 0.499 43.0 0.78 0.530 19.0 94.0 4.8
Whitestone limestone 31.3 139 121.0 0.73 0592 54.0 354.0 6.6
Whitestone limestone 25.7 12.6 1150 0.70 0.568 44.0 343.0 7.7
Oolicastic limestone  14.7 1.68 231.0 0.64 0475 61.0 590.0 9.7
Crude A 159.0 0.75 0.472 61.0 329.0 5.4
Crude B 104.0 0.7t 0.399 28.0 201.0 7.1
Crude C 2420 0.70 0.309 46.0 400.0 8.6
Crude D 784.0 081 0222 1750 1053.0 6.0
Nickel/H,O 268.0 0.99 0.309 308.0 251.0 0.8

*Plotting symbols are used in Figs. 4 and 5.

SPE Formation Evaluation, September 1988



TABLE 1—STRETCHED-, TWO- AND 3-EXPONENTIAL MODELS
FITTED TO LABORATORY T, MEASUREMENTS (continued)

Three-Exponential Comparison

b3 b2 é4 Exponential Fit Errors Err Plotting
Lo, Tia Lo; T2 Lo, Ty Stretched Two Three Erry Symbols*
0.186 13.1 0.444 103.0 0.370 600.0 210 335 115 0.6

0.197 17.3 0.408 125.0 0.395 568.0 52 178 3 0.3

0.379 6.07 0.406 41.0 0.215 354.0 385 267 44 1.4 0
0.177 12.2 0.372 93.0 0.451 523.0 78 274 102 0.3

0.193 12.2 0.420 91.0 0.387 491.0 253 374 187 0.7

0.176 14.6 0.379 106.0 0.445 554.0 94 256 90 0.4

0.093 8.33 0.317 76.0 0.591 383.0 17 202 100 0.1

0.185 4.20 0.621 32.0 0.194 327.0 435 241 56 1.8

0.127 4.81 0.461 41.0 0.412 189.0 95 163 64 0.6 O
0.114 6.19 0.396 55.0 0.490 274.0 0 122 16 0.0

0.183 3.64 0.543 40.0 0.274 210.0 106 247 32 0.4

0.214 29.5 0.380 163.0 0.406 499.0 91 138 46 0.7

0.142 8.04 0.562 46.0 0.296 182.0 181 1565 74 1.2

0.190 17.7 0.452 83.0 0.359 296.0 109 88 8 1.2 A
0.196 19.0 0.433 86.0 0.371 286.0 140 119 48 1.2

0.244 15.0 0.561 67.0 0.195 300.0 224 127 15 1.8

0.247 20.9 0.413 110.0 0.340 469.0 141 128 1 1.1

0.159 2.37 0.461 36.0 0.380 219.0 62 330 100 0.2

0.184 2.27 0.494 38.0 0.322 234.0 100 244 78 0.4

0.280 2.42 0.539 17.0 0.181 81.0 36 18 134 2.0

0.341 2.73 0.599 23.0 0.060 315.0 325 351 75 0.9 'S
0.122 5.38 0.554 33.0 0.324 191.0 193 109 34 1.8

0.167 5.30 0.566 38.0 0.268 214.0 171 137 7 1.2

0.175 2.47 0.543 16.0 0.282 79.0 270 284 183 0.8

0.173 2.29 0.485 15.0 0.342 66.0 285 312 234 0.9

0.213 19.9 0.470 142.0 0.317 413.0 120 198 82 0.6

0.099 5.42 0.326 66.0 0.575 478.0 104 202 63 0.5

0.109 10.9 0.303 92.0 0.588 517.0 9 227 109 0.0

0.164 13.2 0.295 110.0 0.541 529.0 85 190 45 0.4

0.102 4.3 0.319 54.0 0.579 414.0 40 350 227 0.1

0.094 3.15 0.356 49.0 0.550 300.0 194 417 299 0.5

0.170 17.6 0.282 127.0 0.549 597.0 64 317 188 0.2

0.110 5.85 .0.366 66.0 0.523 351.0 53 260 125 0.2 +
0.114 13.0 0.349 106.0 0.537 392.0 80 224 116 04

0.107 6.68 0.406 63.0 0.487 325.0 34 166 46 0.2

0.105 3.56 0.311 53.0 0.583 444.0 242 145 5 1.7

0.132 4.65 0.349 64.0 0.519 466.0 58 439 248 0.1

0.129 13.3 0.285 128.0 0.586 553.0 180 98 40 1.8

0.113 16.5 0.235 116.0 0.653 566.0 119 108 19 1.1

0.150 26.5 0.219 232.0 0.631 842.0 96 238 116 0.4

0.100 7.26 0.265 71.0 0.635 601.0 92 303 185 0.3

0.116 0.70 0.612 10.0 0.272 68.0 140 144 30 1.0

0.233 2.46 0.585 13.0 0.182 77.0 208 150 45 1.4

0.156 1.96 0.628 12.0 0.216 71.0 267 196 107 1.4

0.190 1.52 0.536 16.0 0.274 99.0 139 252 74 0.6

0.058 2.57 0.310 37.0 0.631 279.0 64 233 178 0.3

0.127 2.93 0.456 34.0 0.416 165.0 41 - 80 39 0.5 X
0.128 1.24 0.538 18.0 0.334 86.0 129 266 113 0.5

0.169 1.84 0.507 15.0 0.324 77.0 15 84 27 0.2

0.138 3.69 0.517 36.0 0.346 210.0 226 266 140 0.8

0.164 1.85 0.373 31.0 0.463 195.0 88 288 58 0.3

0.191 1.85 0.402 24.0 0.408 155.0 91 401 186 0.2

0.210 19.0 0.474 174.0 0.317 729.0 215 406 156 0.5

0.205 19.0 0.437 159.0 0.358 655.0 88 261 50 0.3

0.232 29.0 0.440 370.0 0.328 874.0 184 117 15 1.6

0.187 26.9 0.308 226.0 0.505 764.0 67 314 169 0.2 <
0.166 17.8 0.304 178.0 0.529 778.0 282 80 113 3.5

0.198 26.4 0.345 272.0 0.457 1009.0 213 142 81 1.5

0.184 18.4 0.288 147.0 0.528 785.0 117 234 60 0.5

0.122 36.5 0.441 1797.0 0.437 3396.0 795 164 62 4.8

0.160 36.3 0.445 1425.0 0.396 2882.0 759 271 31 2.8
0.330 32.8 0.378 791.0 0.292 1891.0 737 33 164 21.9

0.200 29.4 0.239 286.0 0.561 1210.0 328 183 13 1.8

0.186 31.2 0.218 265.0 0.596 1094.0 216 - 219 66 1.0

0.175 1.05 0.551 11.0 0.274 55.0 226 314 185 0.7 v
0.157 3.28 0.483 35.0 0.360 153.0 185 334 179 0.6

0.241 2.06 0.606 23.0 0.153 323.0 630 772 256 0.8

0.213 10.9 0.626 44.0 0.160 189.0 233 138 63 1.7

0.299 348 0.476 119.0 0.225 557.0 372 119 29 3.1 _)(_
0.448 371 0.354 164.0 0.198 581.0 435 179 85 2.4

0.312 41.8 0.428 238.0 0.260 1068.0 364 256 46 1.4

0.195 31.2 0.635 156.0 0.170 755.0 341 232 60 1.5

0.209 17.6 0.419 78.0 0.373 277.0 104 84 12 1.2

0.142 22.9 0.367 138.0 0.491 518.0 35 121 22 0.3

0.045 35.1 0.364 382.0 0.591 1269.0 58 138 39 04

0.154 213.0 0.501 273.0 0.345 287.0 7 1 1 44
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Fig. 2—Schematic of distribution functions V,(r) corre-
sponding to a stretched-exponential representation (smooth
curve) and to a two-exponential representation (curve with
two spikes).

The T'; behavior of rocks is dominated by the solid surface; i.e.,
most of the decay of proton magnetization occurs at the rock surface.
In the simplest situation (called the fast-diffusion limit), protons
diffuse across the pore in a time that is short compared with the
time for a proton to be relaxed at the rock surface. Proton mag-
netization is therefore uniform across the pore and exhibits a single-
exponential decay* given by

Mp(t)y=e PL SVt

Here, py, is the relaxing power of the rock surface and corresponds
to Seevers’! parameter hr,. S/V is the ratio of PV to pore surface
area. The relevance of S/V is intuitively clear because a magne-
tized volume is undergoing relaxation primarily at the surface. Be-
cause ($/V)~! has dimensions of length, we may call it a
characteristic pore dimension and denote it by a.

In the case where the pore is not at the fast-diffusion limit, the
problem is treated mathematically as diffusion in a volume with
absorbing boundaries; for simply shaped volumes, the solution is
expressed as a sum of exponential terms, called a normal-mode ex-
pansion. (This lends support to the assumption we made that led
to Eq. 1.) :

We now present arguments indicating that for a real rock,
Vp(71) is rather smooth and broad and is likely to have the
decreasing nature that yields stretched-exponential behavior. To a
large extent, these arguments are not different, but represent
different ways of looking at the same thing.

In the simplest case where all pores are in the fast-diffusion limit,
a smooth distribution of pore sizes, weighted toward small pores,
gives the desired distribution of Vp(71). In the pore space of Fig.
3, this distribution is represented by the different sizes of Pores
1 and 2.

If diffusion is not close to the fast-diffusion limit (for example,
if the pore is very large or if p; is very large), short-decay terms
become increasingly important in the normal-mode expansions; there
are typically an infinite number of short-decay terms. Thus, moving
away from the fast-diffusion limit produces Vp(7;) distributions
with the character associated with the stretched-exponential T; be-
havior.

Grain surfaces are very rough, leading to a distribution of relax-
ation times within each “‘pore.’’ The pore geometry shown in Fig.
3 would have a two-component decay, with the short component
coming from the interstices among the clay and having a decay time
(assuming all decay is in the fast-diffusion limit) given by py /1,
and the long component coming from the open space in the center
of the pore with its larger dimension L. In reality, the grain surfaces
have been shown by a number of authors!!"1? to have roughness

“if the entire rock were in the fast-diffusion limit, T, would be single-exponential; in contrast,
we assume here that each individual pore is in the fast-diffusion fimit but is sufficiently
isolated from neighboring pores (by throats where the probability of decay is much
enhanced by the increased surface/volume) that its decay rate can be different from those
neighboring pores.
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Fig. 3—Schematic of pore space in a sandstone rock.

over a very wide range of lengths. Such a wide range would give
rise to a wide distribution of NMR decay times, and hence to a
stretched-exponential decay. Note that this rough-surface effect can
also be viewed as a case of the pore-considered-as-a-whole not being
close to the fast-diffusion limit, as in the previous paragraph.

Material causing decay of nuclear magnetization may be non-
uniformly distributed on the grain surface. All the above arguments
are based on modeling the relaxation centers at the grain surfaces
through a uniformly distributed relaxation strength p; . It is also
quite possible, however, that some parts of the grain surface have
stronger relaxation than other parts. In such a case, ‘‘smearing”
or averaging over a distribution of surface relaxation strengths would
be appropriate, which is equivalent to averaging over relaxation
rates.

This discussion shows that the stretched-exponential represen-
tation is connected to an agreeably natural picture of smooth, fairly
broad distributions of relaxation times, and thus is a more natural
way to represent rock T behavior than the spiky distributions
equivalent to a two- or three-exponential representation.*

All the foregoing discussion applies to water-saturated rocks. In
partially hydrocarbon-saturated rocks, there may be two distinctly
different proton populations, so it may be useful to compute in
parallel both stretched-exponential and two-exponential represen-
tations.

Conclusions. Laboratory measurements of NMR T were pre-
sented. Three representations were fitted to the data: two-, three-,
and stretched-exponential. The last fits the data about as well as
the two-exponential, while it has the distinct practical advantage
of being more compact. Furthermore, the stretched-exponential
representation rests on a somewhat more natural view of the rock’s
having a relatively smooth distribution of decay times, with much
of the weight at short times.

Part 2—Estimating Permeabllity From T,
Laboratory Measurements

Introduction. This part examines the estimation of permeability
from NMR T, using the laboratory measurements shown in Table
1. Following the lead of Seevers! and Timur,2* we examine per-
meability estimators generalized from the form ¢7T2; the result
is that the form ¢* T2 is found to perform significantly better than
Seevers® ¢T';2. We then compare this statistically derived result
with a physical picture of the connection between permeability and
NMR T and tentatively conclude that the factor ¢* makes an ap-
proximate conversion between the length to which NMR is sen-
sitive and the pore-throat size to which permeability is sensitive.
Using laboratory measurements, permeability can be estimated
equally well using either the stretched-, two-, or three-exponential
representations. We show in a simple way, however, that for the
noise levels encountered in borehole data, the stretched-exponential
representation provides a more robust estimate of permeability
simply because it uses fewer parameters.

Correlation Between Laboratory-Measured Permeability and
NMR T;. This section pursues three closely related goals: (1) de-

“In numerical reality the measured 7, curve is quite insensitive to the details of Vol h
otherwise, the inverse Laplace transform of the T, curve would immediately yield Vp(ry).
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TABLE 2—-LEAST-SQUARES ESTIMATORS OF PERMEABILITY FROM T, AND ¢

k, Model* -Exp**  F,t sy S, 83 o,% Remarks
A FuT2¢4) 3 35x10-5 — — - 634 Uses onlythe longest component from the three-exponential
A ] " representation.
B 3 28x10~7 1.77 403 — 2.92 Uses the longest component in either the three-, two- or stretched-
c FeTif1é72 2 3.6x107% 2.09 461 — 260 exponential representation, and allows independent optimization of
D S 1.6x10-9 2.31 430 — 265 the exponentson ¢ and T,.
E 3 20x10-% 154 — — 476 Generalization of Case A, using all available components, and
F  FZ Tﬁ @)% 2 9.7x10-% 147 — — 3.86 computing the exponent that produces the best permeability
G S 14x10-% 136 — — 3.43 estimation.
H 3 25x10-% 104 — — 269
I FETEe4)% 2 38x10-% 1.09 — — 2.61 Modifications of Cases E through G with new ¢ exponent.
J S 10x10-% 113 — — 265 .
K FET3 ¢,°2)%s 3 6.0x10°% 1.10 2.76 1.81 2.62 Generalization of exponents of Case E or H.

“k is the estimated permeability.

¢; and T; represent the amplitude and time-constant of the ith component in the multiexponential representation of the longitudinal
relaxation behavior. ¢, is scaled such that £¢; = ¢. The component with the longest 7, is ¢,(T,,) (as in Entries A through D). For compactness,
the subscript and summation notation is also applied to the stretched-exponential even though no summation is involved.

**"-Exp” specifies whether a three-, two-, or stretched-exponential representation was used for T, data.
tF « is scaled so that k, yields permeability in millidarcies, while T, is in milliseconds and porosity is in percentage porosity units.
*ak is the average factor by which the estimated permeability misses the measured permeability (see text). Smaller o indicates a better estimator.

termine the best permeability estimator from T for our data set*;
(2) determine which representation of the NMR T behavior allows
the best permeability estimation; and (3) determine which charac-
teristics of the T decay are most important in estimating permea-
bility.

Our method was to perform a least-squares fit between the esti-
mated and measured permeability values using most of the samples
listed in Table 1. The least-squares fit was performed by iterative
numerical minimization of the root-mean-square fit error E, where

[log k(i) —log k,(i)]>.

1
E=— Y
N

i=1LN

N is the number of samples, k(i) is the measured permeability of
Sample i, and k(i) is the corresponding estimate of permeability
from NMR. The parameters varied to obtain the minimization were
the premultiplier F and the exponents s; and s, in the permea-
bility estimator of the general form Fy - Ty*1¢%2, which in turn is
a generalization of Seevers’ permeability estimator ¢T';2. We will
express the error of a permeability estimator by oz, the an-
tilogarithm of E; roughly speaking, g is the average factor by
which the estimated permeability misses the measured permeability.

Table 2 shows the results of the optimization and is annotated
briefly to show the purpose of each group of estimators. Within
most groups, all three representations were used to see which per-
formed best. We discovered first that.an exponent of about four
on porosity greatly improved the estimators that use only the longest
component of the representation; later groups in Table 2 test whether
this holds true if all components of the representation are used.

The conclusions we draw from Table 2 follow.

1. The best exponent of porosity is about four. This is true for
all three representations, whether using only the longest component
or all components. (By exponent, we mean the resultant exponent;
for example, the exponent of ¢ in Entry J is 4-5; ~4.4.)

2. The best exponent of T; is about two, just as in Seevers’
original estimator. This exponent of two agrees with the simple di-
mensional analysis of the next section.

3. Knowing a does not help. We were not able to reduce the var-
iance in permeability estimation by incorporating the stretch ex-
ponent « as either a factor or an exponent.

4. All three representations perform equally well. The fit error
in Entries H through J is very close to being equal. However, the
premultiplying constant changes with the representation and the es-

*Timur also examined the estimator ¢**/[1 — (FF1,/¢))2. We have not examined this form
of estimator because we do not currently have all the eiements to connect laboratory T,
measurements to FFi as measured in the borehole.
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timator form. The change can be an order of magnitude or more,
so estimation of permeability from borehole data should use the
same representation and estimator form on which the underlying
laboratory correlations were based.

5. The details of the estimator form are not important. The
longest-component and sum-of-component estimators perform
equally well, and the interchange of summation and exponentiation
reflected in Entries H and K does not change estimation error.

We now refer back to the three goals for this section. The best
permeability estimation is achieved by the form ¢*7T2, which well
represents all the best estimators, namely Entries C, D, and H
through J. As an example, the performance of Estimator D, which
uses the stretched-exponential representation, is shown graphically
in Fig. 4. The symbols used to represent groups of samples in Fig.
4 are indicated in Table 1. Several samples were excluded from
the least-squares minimization and from Fig. 4 because they were
outliers. Eight of these are samples with high iron contents,* three
samples (Fontainebleau) are quarried sandstones with extremely low
surface areas (about 0.05 m2/g—i.e., about 1/10th the surface area
of Berea), and the remaining four are carbonates. Fig. 5 plots per-
meability vs. porosity to indicate the range of porosities covered
in the samples; comparing the vertical spread in Figs. 4 and 5 in-
dicates the worth of T in estimating permeability.

The second goal was to determine which representation provided
the best permeability estimation; we established that the two-, three-,
and stretched-exponential representations are all equally good. The
third goal was to establish which aspect of the T curve is most
closely related to permeability. The relevant observations are that
knowing o does not help and that the additional detail of a three-
exponential representation yields no improvement over the stretched-
exponential representation. We conclude that the most important
aspect of Ty behavior is a decay time, while more detailed
knowledge of the T; decay shape is not helpful on the average.

The permeability estimation is surprisingly better than that shown
in the literature. I* In particular, in our data, estimation errors do
not fluctuate widely from one well to another. It is possible that
data iln the earlier literature might be improved by using ¢* in place
of ¢!

Physical Perspective on Permeability Estimation. The objective
of this section is to consider the physical significance of the $*T;2
form found to provide the best permeability estimator in the previous
section.

*In fact, subsequent to the presentation, we discovered that the permeabilities of these
samples were much lower than our original measurements. The correctly measured
permeabilities would shift these samples into the main cluster of data and they would not
be outliers.

627



Computed Permeability (md)

-
dogtagmbaenol Uil 0 anoml s teuet 6l wea
X o
>
5
* o8

103 107" 10 10°
Measured Permeability (md)

Fig. 4—Measured permeability against permeability estimat-
ed from Entry D of Table 2: k,=1.6x10-2T,23¢ 2?;
0, ~2.65,

10‘1 3
1 . o
°
1033 S s 8
3 - °° a
* 3 =]
- o o
g 102 . o
E 3 0
N 3 o o
2 ] e
£ 10': .
0 3 M ° ux
¢ 10°3 - v
a. 3 x x
° Z
-]
] -
7 1073 x =
© 3
> k
= 1 .
10723
1033
3
1074 - . ‘
o 20 30 40
Porosity (%)
Fig. 5—Permeability vs. porosity for the samples of Fig. 4.

Permeability has dimensions of length squared; therefore, in-
troduce an appropriate length a; such that

(ay, is frequently called the hydraulic radius.) Permeability is domi-
nated by pore-throar dimensions (see, for example, Wong et al.1%),
s0 a; may be considered to be a throat dimension. NMR 7', in
the fast-diffusion limit, is sensitive to a different length, anmg,
which corresponds to the effective surface-to-volume ratio for a
pore, as seen in Part 1; specifically,

aNMR=T]pL, ..................................... (3)

recalling that py is the strength of the surface to cause relaxation
of proton magnetization. In general, the permeability length a; will
be different from the NMR length anyg. This effect of this
difference is seen by making the trivial substitution of Eq. 3 into
2 to yield

which shows the key questions in estimating permeability from
NMR.

First, Eq. 4 has an interesting parallelism with the best estimator
obtained from the statistical treatment of Part 1:

ke“¢4T12.

Eq 4 predicts that the best permeablllty estimator will contain a
T2 factor, as indeed emerged in Table 2. But Eq. 4 also leads
us to expect that the correlation between T;2 and permeability
would be broadened by unpredictable variations in both p; and
(ar/anmr)- In apparent contradiction, however, Fig. 4 shows very
little broadening, which implies either that the product pyaz/anyg
is constant or that its variations are accounted for in the ¢# term.
We argue in the following paragraphs that pL probably is relatively
constant from well to well and that the ¢4 form accounts for vari-
ations in (ax/anmg)?.
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Variations in p;, probably originate in differences in the grain
surface, which we expect are not correlated with porosity and hence
are not accounted for by ¢*. Thus, p; must be relatlvely constant
from rock to rock to yield the relatively small spread in permea-
bility estimation. A second possibility is that changes in p; do not
affect the rock I behavior as strongly as expected from Eq. 3.
This would occur if rocks were closer to the slow diffusion limit,
but such is evidently not the case because the decay actually does
depend on surface conditions, as seen, for example, in the effect
of saturating-the rock with hydrocarbon instead of water.> The
most likely explanation, therefore, is that the effective p; does not
change much from rock to rock.

We argued that p; variations are probably 1ndependent of
porosity, so ¢4 must reflect or account for variations in ar/anmgr;
comparison of Eqgs. 4 and 5 then suggests the following scaling re-
lation (discussed in Ref. 16):

ak/aNMRocqbz. .................................... (6)

Compared with ¢!, ¢* tends to shift the weight in the multiex-
ponent estimators from the larger dimensions to the smaller dimen-
sions, and hence perhaps is more sensitive to the pore throats, which
really control permeability. This shift would be seen, for example,

in a detailed exammanon of the three-exponentlal estimators, En-
tries E (ZTI, ¢;) and H (ETl, $;%), where ¢* typically has the
effect of shifting weight from the long-time component to the
medium-time component, compared with the ¢! term; specifically,
the long-time term (T};) dominates the ¢! estimator, while the
medium- and long-time terms tend to be about equal in the ¢* es-
timator.

While we obtained good statistical success in estimating perme-
ability from NMR, two key questions are unresolved. It is unclear
why the effective surface relaxing strength p; does not vary more
from rock to rock. A direct measurement of p; would greatly
clarify this puzzle; such direct measurements have been made (using
pulsed gradient methods) in carbonate rocks,!’ but not in sand-
stones. The issue of whether a typical porous medium is close to
the fast-diffusion limit is discussed on the basis of mathematical
modeling in Ref. 17, and is discussed in the context of fused-glass-
bead samples in Ref. 18.
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Robustness of Permeability Estimation From Borehole NMR
Data. We saw in the previous section that all representations esti-
mated permeability equally well using high-quality laboratory data.
In this section, we show by a simple simulation that the stretched-
exponential permeability estimator is somewhat more robust than
the traditional two-exponential estimator when dealing with the rela-
tively low signal-to-noise ratio of borehole NMR data.

Our simulation of the effect of noise in the borehole NMR meas-
urements is simple; noise is represented as an additive perturbation
in the points on the laboratory-measured T curve.*

Specifically, we used six data points with z,, values ranging from
100x 1073 to 4.65 seconds, taken from the inversion-recovery lab-
oratory measurement on one sample (Berea 100). The number of
data points and the range of ¢, values are thus close to those typi-
cally used in borehole NMR station measurements. A Gaussian-
distributed random number was added to each of the six data points,
with a noise-to-signal ratio of approximately 1'2%. This value cor-
responds closely to the noise that would be present in a borehole
measurement, assuming a porosity of 20%, a noise level of 1 FFI
unit in each FID waveform, and averaging nine repeats at each
polarizing period.

Stretched-exponential and two-exponential fit parameters were
computed for the resultant noisy data; this was done for 20 different
realizations. We computed as an error statistic the average value
of |k; —kq|/kq, where k; is the permeability estimated from each
noisy signal and kg is the permeability computed in the noise-free
case.

The stretched-exponential estimator of permeability ¢*73,, has
an error statistic of 11%; the two-exponential representation has
an error statistic of 22%. In general, the difference in error statistic
comes from the need to estimate more parameters in a two-
exponential representation; more particularly, the long-time com-
ponent tends to dominate the short component in a two-exponential
estimator of permeability, and the long component is less stable
than T,. For both estimators, however, these noise-induced errors
in permeability estimation are less than the estimation errors shown
in Table 2.

We conclude that the stretched-exponential representation
provides a more robust approach to estimating permeability from
borehole NMR data. Both stretched-exponential and two-exponential
parameters, however, may be usefully extracted in parallel from
borehole data using the global-fit processing presented in Part 3;
a significantly smaller fit error for a two-exponential representation
than for a stretched-exponential might usefully indicate two dis-
tinct components, hydrocarbon and water in particular. The fol-
lowing section includes remarks about the effect of hydrocarbon
saturation.

Limitations of This Method. More knowledge is needed in two
important areas: (1) the effect of partial hydrocarbon saturation on
rock NMR response, and (2) the dependence of T behavior on
the strength of the magnetic field of the measuring device.

Most frequently, permeability must be estimated in the presence
of partial hydrocarbon saturation. The effects of such hydrocarbon
saturation have barely been dealt with in the literature, but the basic
elements are known. A few measurements of rocks with partial air-
and water-saturation!? indicate that the T; of the water phase
decreases as the water saturation decreases. The oil phase probably
has a T close to its bulk behavior, because even contact with the
grain surface seems to have only a small effect in reducing the T
of 0il.> The bulk T of oil is determined primarily by its vis-
cosity,22 but most crudes are not single-exponential (a few ex-
amples are shown in Table 1).

The expected total effect of partial hydrocarbon saturation is to
reduce the T of the water and to superimpose the T'; behavior of
the oil. These effects will perturb the estimation of permeability.
However, because borehole NMR equipment has a shallow depth
of investigation, the hydrocarbon saturation will be low in normal
light hydrocarbons and this perturbing effect should be small. Of
course, some NML applications depend on the oil signal being
clearly distinguishable from the water signal.

*A more thorough test would incorporate noise into each FID waveform in a set of FID
waveforms, and would include the effect of the global-fit processing.
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More knowledge is needed about the dependence of rock NMR
properties on the strength of the magnetic field applied in the meas-
urement. The dependence comes about because the decay of nuclear
magnetization is governed by the amount of fluctuation in the local
magnetic field felt by the proton ar the Larmor frequency and at
twice the Larmor frequency.?® At some different Larmor fre-
quency corresponding to a different applied field, the amount of
such fluctuations may be different. Preliminary measurements in-
dicate that there is in fact a significant variation in T; between the
fields of routine laboratory measurements and the field of NML
devices. This difference is a matter of concern not just for our meas-
urements, but also for results already in the literature. 14

Conclusions. Permeabilities can be estimated rather well from NMR
T| measurements on water-saturated sandstones, giving an average
error factor of about 3 in favorable circumstances. The form
T;%¢* was found to be significantly better than the T;%¢ form
found in the literature. The resultant permeability estimates reflect
the data underlying the correlation—namely, for single-phase per-
meability for flow parallel to beds. The choice of representation
for the T curve is not important for use with laboratory data, but
the stretched-exponential is somewhat less sensitive to noise at the
levels encountered in typical borehole measurements.

Part 3—Extraction of T, Parameters From
Borehole NMR Data

Introduction. This part discusses the extraction of NMR param-
eters from borehole NMR data, with emphasis on the T param-
eters examined in Part 2. Borehole data typically consist of a set
of FID waveforms measured for a set of polarizing times, as illus-
trated in Fig. 9. These measurements are usually collected with
the tool stationary, which allows stacking a number of FID
waveforms for each polarizing time used.

The traditional method of extracting 7'y parameters from such
a data set is to make a single-exponential extrapolation of each FID
waveform back to zero time, through the dead time of the meas-
urement circuitry, which is approximately 20 milliseconds. The
resultant amplitudes are then plotted vs. polarizing time. The va-
lidity of this method is called into question by the behavior we ob-
served in borehole data, in which T3, the observed decay rate of
the FID waveform, tends to decrease as polarizing time decreases.
In this section, we demonstrate the same behavior in a laboratory
measurement and present two models for downhole data to account
for this behavior. We show how T parameters can be extracted
by fitting either of these models simultaneously to the FID
waveforms for all polarizing times. This simultaneous fitting is a
new method for extracting T'; parameters, which we call global-
fit processing.

Laboratory Approximation of Borehole NMR Data. Using lab-
oratory NMR equipment, we performed a measurement designed
to mimic the important features of a borehole measurement. The
pulse sequence used is shown in Fig. 6; a 90°-1,-90° [1.6-rad-1,-
1.6-rad] pulse sequence, followed by a Carr-Purcell-Meiboom-
Gill” sequence of 180° [3.1-rad] pulses to collect a T, decay
curve. This combination of pulses has the following effect. The
equilibrium magnetization is tipped into the transverse plane by the
first 90° [1.6-rad] pulse, where it dephases at about T4=4x10"6
seconds, and plays no further role. Magnetization then builds in
the longitudinal direction for a period ¢, which corresponds to the
polarizing time in the downhole measurement; finally, the second
90° [1.6-rad] pulse tips this magnetization into the transverse plane,
where its decay is recorded with the Carr-Purcell-Meiboom-Gill
sequence.

This procedure measures T, rather than 7% because the Carr-
Purcell-Meiboom-Gill sequence essentially eliminates the effect of
magnetic field inhomogeneities; thus the laboratory measurement
is simpler than the borehole measurement, in which magnetic field
inhomogeneity makes a large contribution to the FID decay con-
stant T3.

The results from such a laboratory-NML measurement sequence
are shown in Fig. 7. The shorter polarizing times indeed produce
faster decays in the subsequent transverse magnetization decay, just
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Fig. 6—Pulse sequence for the laboratory-NML measurement
designed to mimic a borehole T, data set.

as in borehole measurements. We conclude that this effect is real,
and not just an artifact of the borehole measurement.

A simple physical explanation for this dependence of T4 on
polarizing time is as follows (see Fig. 8). Suppose for the sake of
simplicity that there are two species* of protons, one with a shorter
T, than the other. A short polarizing time polarizes most of the
short-T'; protons but relatively few of the others, while a long
polarizing time polarizes all protons in both species. Now consider
what happens during the transverse-magnetization decay after
polarizing: if the species with the shorter T; also has a shorter 7,
then after a short polarizing time the magnetization decay is domi-
nated by the short species and thus has a short T, whereas after
a long polarizing time the decay contains contributions from both
species and thus has a longer T,. The net effect duplicates qualita-
tively the observed effect: the T, decay will appear faster for short
polarizing times than for long ones.

This reasoning holds for any number of species or environments;
the essential condition is that protons in an environment where they
exhibit rapid (‘‘short’”) T decay must also show rapid (‘‘short™)
T, decay. We write this condition mathematically as

Ty;>Ty; if Tyj>Ty;,

where the subscripts i and j refer to Species i and j.

We now build this reasoning into a model for the laboratory-NML
response, which we can fit quantitatively to the data of Fig. 7. Fol-
lowing the form of Eq. 1, we can write the observed transverse
magnetization as an integration over pore sizes a:

Mr(tyte)= da-a®-Pla)(1—ePiipl)e=rtala,

where ¢, is the polarizing time and ¢, is the decay time. The factor
in parentheses represents the buildup of longitudinal magnetization
in a pore during a polarizing pulse, while the following factor rep-
resents the subsequent transverse-magnetization decay. We have
assumed that each pore has a single-exponential decay (equivalent
to the pore being in the fast-diffusion limit), so that T, and T, are
determined respectively by p; and pr, the effective relaxation
strength of the wall for these two types of decay:

Ty=alpy, Ty=alpy.

Here a is a dimension of the pore, equal to the inverse of the ef-
fective surface-to-volume ratio. Note that within any pore,
Ty/Ty=prlpr, which means that pores with comparatively short
T, will also have comparatively short T,, thus meeting the con-
dition of the previous paragraph; the different environments or
species correspond to pores of different sizes.

Integrating Eq. 7, assuming P(a) corresponds to a decreasing
distribution function and using the saddle-point technique, yields
an expression involving two stretched exponentials, as discussed

“We use the word speciss for convenience. It would be more accurate to say that the 7,
behavior is associated with an environment than with a particular set of protons; an
important aspect of environment is closeness to grain surfaces.
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Fig. 7—Result of NML pulse sequence of Fig. 6 applied to a
water-saturated rock. t, increases by factors of the cube
root of 10 from 100 x 10 -3 seconds for the bottom curve to
10 seconds for the top curve. The smooth curves are the re-
sult of fitting Eq. 3 to the measured curves; parameter values
are shown in the box.

in Appendix C. The following approximate form,

MT(tp R td) =M0[e—(td/T2a)aT—e_(td/T2a+tp/T1a)aL],

fits the laboratory data well, as shown in Fig. 7. The model notably
matches much of the fast decay at early times in each of the in-
dividual transverse-magnetization decays. Note that all the measured
curves shown in Fig. 7 are simultaneously fitted in the numerical
minimization of fit error.

We conclude that a dependence of transverse-magnetization decay
rate on polarizing time can be observed in a laboratory measurement
emulating downhole data, and that the laboratory measurement can
be fitted by a multiple-species approach, in which protons with a
comparatively short T have a comparatively short 7'5.

Parameter Extraction From Borehole NMR Data. The previous
section grouped together the set of transverse-magnetization decay
curves collected for a set of polarizing times and fitted a model
simultaneously to the whole group. In this section, we adapt this
grouping approach to the extraction of 7 parameters from
borehole data using both stretched- and two-exponential data
representations. We illustrate this proposed new ‘‘global-fitting”’
method on one set of waveforms taken from the water zone of a well.

In borehole measurements, the recorded FID typically decays
much faster than expected from laboratory values of T,. The major
contributor to this rapid decay probably is magnetic-field in-
homogeneities,* the same reason that a normal laboratory 775 is
shorter than 7.

To adapt the model of the previous section to these short FID’s,
we assume that the observed magnetization M % consists of an ex-
ponential decay caused by field inhomogeneity, superimposed on

x_

*Magnetic-field inhomiogeneities cause rapid decay of ir:
the Larmor or precession frequency varies from point to point, so lhat phase coherence
of the aggregate precession is lost quickly. Such inhomogeneitios may come from
numerous sources: macroscopic magnetic heterogensities (susceptibiiity variations or
magnetic minerals) in the formations encountered; susceptibility heterogeneities from the
presence of the borshole, and the magnetic materials within it; and additional
heterogeneities from the presence of the tool (for exampie, the presence of magnetic tool
components within a dozen feet of the coil).
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Fig. 8—Schematic explanation for the dependence of T, on
polarizing time.
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Fig. 9—Station NML measurement from a water zone. The
polarizing times start at 100 x 10 ~3 seconds at the bottom
of the page and increase by factors of 2 up the page to
3,200 x 10 -2 seconds. Also shown are the fitted stretched-
exponential (solid curves) and two-exponential (dashed-
curves) models. Parameter values are given in the box.

the FID observed in the absence of inhomogeneity, M r:
MYty ) =e d TanMp(tyty), oo ©)

where T;,;, is the decay-time constant associated with the field in-
homogeneity.

We now further assume that 7';,;, carries most of the responsi-
bility for 7% being so short, while the intrinsic T, decay bebavior
is essentially the same as the 7 behavior. For a discrete- (e.g.,
two- or three-) exponential model, the assumption is specifically that

1/T§i=1/T2i+1/Tinh=1/T1i+l/Tinh' ................ (10)

This assumption is that the term 1/T},, is much larger than the
difference between 1/T; and 1/T.

We can defend this assumption indirectly. First, experience with
the NML tool shows that 75 is much shorter than T’y and also
varies from well to well. The variation depends on hole size, the
amount of magnetite used to dope the mud, etc., thus indicating
that the controlling influence on 7% is magnetic-field homogeneity.
Second, our laboratory NMR measurements designed to minimize
the effect of inhomogeneities (using the Carr-Purcell-Meiboom-Gill
sequence) show that T, is much closer to T'; than is the borehole-
measured T5. This closeness is in agreement with the well-known
fact that T, =T in the limit of a very low magnetic field (as seen,
for example, in Bloembergen ez al.’s2 classic NMR paper).

Using the two-exponential representation in Eq. 7, we obtain one
of the two desired models:

Mi(tpt)= L Mo(l-e "/ Tie~t/Th], ... (an
i=12

where T%; is given by Eq. 10. This model has 5 parameters.* Eq.
11 is a specific case of the most general result arising from the as-
sumption discussed above, namely that

MH(tytg)=e =" Tun [My (1)) =My (tg+1,)). ... ..... (12)

*As an alternative to using the assumption of Eq. 10, T,, can be chosen independently
for each species in a two-species model, yielding a model with six parameters.
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Substituting the stretched-exponential representation yields the
second desired model,

M3(1p.10) =e~1a/TinMy{e~(a/ T1d)* — ¢~ Wta+1,) Tial*},

which has four parameters.

The two-exponential form of Eq. 11 is the simplest to interpret
physically; it corresponds exactly to the qualitative picture of Fig.
8. This model and the corresponding stretched-exponential form
of Eq. 13 both meet the requirement that species of protons with
long T have correspondingly long T,. We thus have two alter-
native models describing the collection of FID waveforms con-
stituting a borehole 7' data set.

The proposed new method of extracting Ty parameters from
borehole T; measurements is to perform iterative numerical
minimization of the error between the model and the entire T data
set. The minimization results in the desired parameters* (for ex-
ample, T, «, and T}, in Eq. 13). We call this a global-fit proc-
essing method.

An example of global-fit processing is shown in Fig. 9. We have
chosen a zone that contains no hydrocarbons to avoid any compli-
cation resulting from their presence. Both models fit the data satis-
factorily; to make this judgment, we have compared the fit error
with an independent estimate of the noise (computed using a syn-
chronous demodulation technique similar to that of Neuman and
Brown2!:22; the noise estimate is obtained from the out-of-phase
component, which in principle contains exactly half the noise and
no signal).

Conclusions. We used a laboratory measurement to confirm a de-
pendence of transverse-magnetization decay rate on polarizing time
observed in borehole NMR measurements. We constructed a mode}
for this behavior in which the crucial element is that proton species
with comparatively long 7', have comparatively long T,. This

*The amplitude of the model (for example, M, in Eq. 13) is not a free fluid index, which
by definition is the amplitude resulting from a single-exponential backward extrapolation
of the FID; M, is rather an estimate of the totaf fluid.
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model fitted the laboratory data well. We extended this model to
borehole data by assuming that the borehole-observed T% is domi-
nated by magnetic-field inhomogeneities. Globally fitting one or
more of these models simultaneously to the collection of FID’s for
different polarizing times allows extraction of T parameters while
accommodating complicated behavior of the waveform set.

Results and Conclusions

In this paper, we considered the subject of estimating permeability
from NMR 7 measurements, examining both laboratory and
borehole data. We found several useful resuits.

1. Laboratory measurements of T and permeability were made
on approximately 60 sandstone samples that were fully water-
saturated. A new representation, called the stretched-exponential
representation and having the form Mj(f)=Mge ™/ Ti)®, was
found to represent the data as well as the classic two-exponential
representation while offering the important practical advantage of
using fewer parameters.

2. Comparing the permeability and 7'; measurements on the 60
samples led to the conclusion that permeability can be estimated
well from the form k,=F; T12¢>4, better, in fact, than using the
form T12¢ found in the literature. All three representations—
two-, three-, and stretched-exponential—were tested and each did
equally well at estimating permeability from the laboratory meas-
urements. A simple test, however, indicated that for the noise levels
encountered in borehole data, the stretched-exponential represen-
tation produces more robust permeability estimates than the two-
exponential representation.

3. Laboratory measurements confirmed a complexity of NMR
waveforms observed in borehole data—namely, that the observed
transverse decay rate T3 increases as polarizing time decreases.
We explained this with a two- (or more-) species model, in which
a species with a comparatively long T has a comparatively long
T5. For borehole data, this explanation led to two models, one
using the two-exponential representation and one using the stretched-
exponential representation. We then showed a global-processing
method of extracting 7 parameters from borehole T data by
fitting either or both of these models simultaneously to the collection
of waveforms at various polarizing times.

We pointed out some of the limitations of this and previous studies
of estimating permeability from NMR measurements; the limitations
include a dearth of data on partially saturated samples and on the
frequency (i.e., magnetic-field amplitude) dependence of T;.

Nomenclature

a = characteristic pore size
ay = size corresponding to permeability, sometimes
called hydraulic radius: k=a,§
anMRr = size determined from NMR decay
D(t) = result of converting an inversion-recovery
measurement to a decay curve (i.e., a curve
that starts at a nonzero value and decays to
Zero)
D4().Dx(0),
D¢(#) = result of estimating a decay curve from a
measured inversion recovery curve in three
different ways, defined in Appendix B
F; = premultiplying factor in a T{1¢%2 estimator of
permeability
F(7) = exponent used in expressing P(7;)e ~tT1 a5 an
exponential
IR(t) = result of an inversion-recovery measurement of
T behavior
k = permeability to fluid flow; measured permeability
k., = estimated permeability
k; = permeability estimated from the ith realization of
a noisy signal
kp = permeability estimated from noise-free signal
k(i) = measured permeability of ith sample
{ = small length scale observed in pore space
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L=
M) =
Mr(t) =
M3y =

pL =

large length scale observed in pore space

longitudinal nuclear magnetization

transverse nuclear magnetization

transverse magnetization behavior observed in the
presence of magnetic-field inhomogeneities

= nuclear magnetization at the start of relaxation
= nuclear magnetization of Component i at the start

of relaxation

= distribution of pore size a

exponents used to optimize permeability
estimators

= time

decay time (i.e., time after beginning
measurement of transverse nuclear
magnetization)

longest value of polarizing time used in an
inversion recovery measurement

polarizing time before a measurement of
transverse nuclear magnetization

time constant associated with additional decay
caused by magnetic field inhomogeneities,
Ty =Ty 4+ T

time constant for changes in longitudinal nuclear
magnetization

time constant for changes in longitudinal nuclear
magnetization of Component i or Species i

time constant for changes in longitudinal nuclear
magnetization in the stretched-exponential
representation

time constant for changes in the longest
component in a two- or three-exponential
representation of longitudinal nuclear
magnetization

time constant for changes in transverse nuclear
magnetization, in the absence of magnetic field
inhomogeneities

= time constant for changes in the ith component

or ith species of transverse nuclear
magnetization

time constant for changes in transverse nuclear
magnetization in a stretched-exponential
representation

observed value of T',; usually shorter than T,
because of inhomogeneity of the magnetic field
of the measuring device

volume fraction of protons of longitudinal
relaxation time 7,

stretch exponent used in the stretched-exponential
representation of nuclear magnetization

stretch exponent for longitudinal nuclear
magnetization

= stretch exponent for transverse nuclear

magnetization

additive term used in fitting exponential models
to NMR 7| behavior measured by inversion
recovery

additive term giving the best fit for a stretched-
exponential representation

additive term giving the best fit for a two-
exponential representation

ability of the grain surface to relax nuclear
magnetization, L/T

relaxation strength for longitudinal nuclear
magnetization

= relaxation strength for transverse nuclear

magnetization
variance
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o, = variance in estimation of permeability

79 = center value of 7| in a Gaussian distribution

71 = time constant for changes in longitudinal nuclear
magnetization

¢ = porosity

¢; = pore volume fraction of ith component in NMR decay
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Appendix A—Principles of NMR as Applied to NML

NML has been described in a number of papers?!-26; this Appendix
gives only a very brief overview.

NML measures the nuclear magnetism of hydrogen protons.
Protons in a magnetic field tend to align with that field, producing
a net nuclear magnetization. The intensity of the magnetization is
proportional to the intensity of the magnetizing force and to the
density of protons present. On removing the original polarizing field
and applying a second field at right angles, the protons will precess,
like gyroscopes, around this second magnetic field at a frequency
(the Larmor frequency) that is proportional to the magnitude of the
field.

The free-induction precession of the protons may be monitored
through magnetic coupling into a receiver coil. The initial intensity
of the signal may then be used to determine the proton density, and
the rate at which it decays tells us something about the various in-
teractions that the protons experience.

It is observed that the buildup of the net nuclear magnetization
along an applied magnetic field is not instantaneous, but takes a
finite time. This is referred to as T, longitudinal or spin-lattice
relaxation. The latter name refers to the fact that energy is going
into the proton spin system from elsewhere in the system—the
““lattice”’ in solid-state physics. The rate at which this buildup takes
place depends on the amount of fluctuation in the local magnetic
field experienced by a proton at the Larmor frequency and at twice
the Larmor frequency. The buildup of nuclear magnetization is
usually not directly seen in a measurement, but may be inferred
from variations in the amplitude of the FID signals resulting from
varying times of exposure to the applied magnetic field.

Precessing protons, as small dipoles, will also interact with one
another, leading to a dephasing of the dipoles that increases with
time and thus leading to a decay in the signal induced in the receiver
coil. This decay is called spin-spin, T or transverse relaxation
(transverse because it is observed in the plane transverse to the ap-
plied magnetic field.) The presence of inhomogeneities in the ap-
plied magnetic field means that the Larmor frequency will differ
for different protons: the resultant faster dephasing leads to an actual
measured time constant for the FID decay called 7%, which is
always shorter than the underlying 7.

The basic principles by which existing commercial equipment
implements a measurement of proton density and T3 are simple:

1. A large polarizing magnetic field, much greater than that of
the earth, is applied (by passing electric current through a large
coil for a particular length of time) to some volume of the formation
surrounding the tool. This field aligns a fraction of the protons in
the formation away from their equilibrium alignment in the earth’s
field: .

2. This polarizing field is then removed and the protons attempt
to regain their equilibrium by precessing about the earth’s magnetic-
field vector at the Larmor frequency.

3. These precessing protons induce the FID signal into the coil;
the FID signal is a decreasing-amplitude oscillation at the Larmor
frequency. Approximately the first 20X 10~3 seconds of the FID
are lost while transients from the polarizing current and the trans-
mission link die away; the later portion of the signal is recorded
as the raw FID waveform.

4. The envelope of the FID waveforms is extracted from the raw
waveforms by a detection algorithm and then is corrected for noise.

5. The envelope is fitted with an exponential decay to determine
both the decay-time constant 75 and the amplitude of the FID at
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Fig. B-1—Berea 100 measurements and fitted models after
conversion to decay form. Conversion Methods 1 through 3
are shown as solid lines with symbols O, +, and A, respec-
tively. Dotted line is stretched-exponential model, corre-
sponding to +; dashed line is two-exponential fit,

corresponding to A.

the onset of relaxation. This amplitude is then corrected by tool
and environmental algorithms to obtain the FFI. The FFI is a
measure of the density of protons that are sufficiently loosely coupled
to permit measurable magnetization buildup and relaxation behavior
on the time scales present in the nuclear magnetic tool.

Nuclear magnetism logging can typically be done in three modes.

1. A continuous logging mode in which the tool moves along the
borehole. Each polarizing pulse is the same length, typically 2
seconds, and a continuous log of FFI and T is produced.

2. Station measurements, in which the tool is held stationary. FID
waveforms are recorded for each of several polarizing pulse du-
rations. Many variations are possible, but as a typical example, eight
repeat FID’s are recorded for each polarizing pulse duration, and
are stacked before demodulation to improve signal-to-noise ratio;
seven polarizing pulse periods, ranging from 100x 1072 to 6.4
seconds, are used. Current wellsite software stacks the undemodu-
lated repeat FID’s, constructs a T buildup curve using a noise-
corrected root-mean-square energy from the stacked FID corre-
sponding to each different polarizing pulse period, and makes a
two-exponential decomposition of the T buildup curve.

3. A continuous version of the station measurement, in which
three polarizing-pulse durations are typically used.

In this paper, Modes 2 and 3 are of primary concern because
they yield a more complete picture of rock longitudinal relaxation
than Mode 1.

Appendix B—Important Details in Handling
NMR Measurement Data

Models are Fitted Directly to Inversion-Recovery Measurements
and Include a Zero-Offset Term. In inversion recovery, the data

build from an initial value of —Mj at very short times to a value
of +Mj at large times; the measured buildup, IR(¢), is related to
the longitudinal magnetization decay M, (¢) through

IR(OY=My=2Mp(1). .. B-1
We fitted each of the three models of Part 1 by iterative numerical

minimization of

Y {IRGu)-IMo—2M (1) +ABE, ... .. (B-2)
i=1,35

Err=

where A is a zero-offset term that accommodates the lack of perfect
symmetry in the inversion-recovery curve resulting from imper-
fections in the measurement electronics; the short-time magneti-
zation —Mj, is slightly different from the long-time value +M,.
A typically ranges from 5 to 20, compared with an M of 1,200
to 1,500.

Best-Fit Values of Amplitude M, and Zero-Offset A Depend on
the Model Being Fitted. M, and A are both allowed to change
from one model to the next; one result is additional ambiguity in
judging which model fits the measurement data. To illustrate this,
Fig. B-1 shows the data of Fig. 1 (entry Berea 100 in Table 1) con-
verted to decay form three different ways:

1. Dy(t)="%[—IR(t) +IR(tpy)]-

This conversion makes the last data point in the decay curve iden-
tically zero.

2. Dy(1)="A[Mo; + My —IR(t) +4,],

where A, =—15.8. This conversion uses Mg and A from fitting
the two-exponential representation.

3. Dy(t) =M, —IR(t)+A,],

where A;=4. This conversion uses My and A from fitting the
stretched-exponential representation.

The fitted stretched- and two-exponential models are also shown;
they have been converted to decay form using Conversions 3 and
2, respectively.

Fitting Should Be Done in Measurement Space Rather Than
Logarithmic Space. In the older literature, NMR longitudinal relax-
ation data were commonly plotted as decay curves using a
logarithmic axis for magnetization, which offers the convenience
that deviations from straight-line behavior represent deviations from
single-exponential decay.

Fig. B-1 shows one of our T; measurement curves in this
logarithmic-amplitude vs. linear-time format. The important feature
of Fig. B-1 is that the separation between the converted measurement
and the corresponding fit is very large on the long-time samples
of this plot. The large separation arises because the logarithmic mag-
netization axis exaggerates the fit errors at low magnetization values.
A fit error of, say, 10 units in magnetization looks much larger
at low magnetization amplitudes than at high. However, this is a
distorted view of the errors; under the reasonable assumption that

TABLE B-1—MODEL PARAMETERS RESULTING FROM FITTING
OVER DIFFERENT TIME INTERVALS (times are in miiliseconds).

Two-exponential

Three-exponential

M01 T11 A2

interval Stretched-Exponential

Fitted My Tia « Ag Mg Ty
1 26 1510 59.9 0.641 0.2 395 7.7 1050
3 28 1516 60.0 0.637 -0.2 460 9.8 1000
5 30 1518 60.1 0.635 -0.1 502 11.7 956
7 32 1521 60.1 0.632 -~1.0 533 13.6 918
9 34 1525 60.0 0.630 -2.6 560 15.7 878
1 35 1516 60.6 0.638 4.6 4N 104 986

Mos Tiza Mo T My Ty _A_s

Q -7 177 27 627 31 683 147 14
102 22 186 29 656 33 649 156 21
111 40 196 34 677 36 615 164 29
118 57 203 39 691 38 588 170 37
124 76 210 45 700 40 566 176 47
109 33 190 29 683 34 623 165 24
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Fig. B-2—In M (1)/M, vs. time for Sample E6. Measurements
were converted to decay form using Methods 1 through 3 of
Appendix B (symbols O, +, and A, respectively). The broken
lines are the fitted models in decay form: dotted = stretched-
exponential; dashed = two-exponential.
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Fig. B-3—Instantaneous exponential decay rate for Sample
E6. Solid line = measurement; dotted = stretched-exponential
model; dashed =two-exponential model. The bump in the
measured curve at 1 second arises because the final mag-
netization value (1,517.1; see parameter values in the box)
is somewhat too low, producing some negative magnetiza-
tions when converted to decay form according to Method 1
of Appendix B.

the measurement errors are dominated by a random-noise process
that is uncorrelated with the signal, the fitting should be done in
the original measurement space as we have done and not in
logarithmic space as shown in Fig. B-1.

Fig. B-1 also exaggerates the importance of the small number
of late-time sample points in comparison with the much larger
number of sample points at early time. The fitting algorithm, in
contrast, minimizes the fit error summed over all points, and is
therefore heavily influenced by the large number of samples at short
values of polarizing time ,.

Fitted Parameters Vary When Sampling Interval Is Varied. By
extension, the best-fit parameters for rock T, behavior typically
depend on the range of ¢, values used; this is illustrated in Table
B-1 for Sample E6 of Table 1. The first two columns indicate the
first (at shortest time) and last data points used in the fit. For ex-
ample, the first line shows the fit resulting from using Point 1
(30x 1079 seconds) through Point 26 (approximately 1 second).
The last row shows the fit parameters using all 35 sample points.

In this case, the stretched-exponential parameters are more stable
than the two- or three-exponential parameters as the fitting interval
is varied.

The full range of 35 sample points from 30X 107 to 21 seconds
was used to generate Table 1.

Plotting In{—1In M/ (¢)/My] Was Not Very Useful for Testing
Stretched-Exponential Behavior. We expected that a plot of In
[—In M (£)/My) vs. In ¢ would make a simple clear test of whether
a decay curve was closer to being a stretched-exponential or to some
other kind of behavior. On these axes, a stretched-exponential T
behavior, My (1)=Mge~T1)", should plot as a straight line,
with « equal to the slope and Ty, equal to the value of + when
In[M(t)/Mg]=1. In contrast, two-exponential behavior should
plot as two straight-line segments of slope=1, joined by a curved
section. Fig. B-2 shows such a plot for Sample E6 of Table 1; the
three solid curves of Fig. B-2 present the same measurement data
using the three different conversions to decay form illustrated above.
The conclusion is that uncertainties in A and M produce uncer-
tainties in the shape of the curve at very short and very long times,
thus blurring the comparison of models against measurement.

Deviation From Stretched-Exponential Behavior at Early Times
is Usually Obscured by Measurement Uncertainties. According
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to the reasoning of Appendix C, deviations from stretched-
exponential behavior at short measurement times should give in-
formation about the small-7; shape of the distribution function
Vp(r1).

To examine the short-time 7T decay, one can plot magnetization
vs. time on sensitive amplitude and time scales. These plots are
not very satisfactory, so we tried graphs of the type shown in Fig.
B-3. This figure displays the ‘instantaneous exponential decay rate”’
3 In M (r)/0t computed using successive pairs of points in the
decay curve derived from the measurement, along with the corre-
sponding instantaneous exponential decay rate computed from the
fitted models. The two-exponential model, of course, takes on con-
stant values of instantaneous exponential decay rate at very short
and at very long times.

In a number of samples, such as the one shown in Fig. B-3, the
sample behavior looks more stretched- than two-exponential for
decay times somewhat greater than 10X 103 seconds, where the
data are of good quality. However, the instantaneous-exponential-
decay-rate curve becomes very unstable at times shorter than about
1 to 10X 1073 seconds because of lack of resolution in the data
at these short times, perhaps from instability in the 1.6- and 3.1-
rad [90 and 180°] pulses. Thus the measurement really does not
have enough resolution to examine early-r, details of Vp(r}).

Note that this instantaneous-decay-rate plot avoids the early-time
ambiguity problems encountered with the In[—In M (£)/M,] plot
but still has ambiguity problems at late times, as illustrated in Fig.
B-3.

Appendix C—Derivation of Stretched-
Exponential Expression

When magnetization decays as a result of simultaneous and in-
dependent processes, each characterized by a single relaxation time
71, it is legitimate to represent the macroscopically observed mag-
netization as

(o]
Mp(tyee\ drVp(rde ™™, oo (C-1
0

where Vp(r)) is the probability of occurrence of the individual
relaxations.
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Taking a Simple Form For Vp(7;) Illustrates the General Prin-
ciples. Take Vp(7)) to be a decreasing function of 7, specifically
the half-Gaussian:

- 2
e (r1/0) ;

Vp(7'1 ) = T >0, o (C-2)

T

The competition in Eq. C-1 between Vp(7}) and e ™71 makes it
possible to evaluate the integral using the ‘‘saddle-point method.”’
Specifically, for fixed 7, the integrand is small at short 7| because
of the exponential decay, and also small at long 7{ because of the
Gaussian Vp(7{); the chief contribution to the integral must
therefore come from some intermediate value of 7;, where the
product of the two factors is maximum. We can find the maximum
by first writing the integrand in the form

Vp(r)e T =g Vp(T)g=tITy me~Flry) .. (C-3)
and then by locating the zero of the derivative,

dF 1 dP t

—El e (C4)

dTI P dTl T12

For our Gaussian example, F=(r,/0)2 +(t/7{); F has a minimum
at the point

TE=0I2)%, (C-5)
and its value there is
FH()=3(t/120)%. ... .. . .. (C-6)

Carrying out Taylor’s expansion about 7§, we arrive at the approx-
imation

M) =f(t)e~ T

where f(1)=(1//3)[1+erfVF*() ] and Ty, =20/3%.

The time-dependence of the error function appearing in f(z) does
not materially affect the stretched-exponential behavior. For small
arguments, erf(x) is proportional to x and the erf term is thus small
compared with 1. For large x, erf approaches 1 at a rate propor-
tional to 1/x; for ¢ of order 2, o, the coefficient of the stretched ex;
nential, is no longer changing with ¢ and has the value (2//3).
Thus the Gaussian Vp(7;) produces magnetization decay of the
form

Mi(ty=Mo-e~WT% . (C-8)
Note that T, is proportional to o, the variance of Vp (7). In fact,
we can always set 0=1, provided that we measure the observation
time ¢ in units of ¢.

In the General Case, Vp(r))~e~ /0" " p(s)~
Mye~T1)% | To see this, note that for the half-Gaussian, sub-
stituting F*= 3(t/2a) % into the Amtegrand produced magnetlzatlon
behavior of the form e ~*T1a)™ | More generally, the expression

636

My ()=Mge~T1)™ emerges if 7#~1(1=® which itself arises
from a distribution

Vp(ry)ece= (/™™

N (C9
This can be checked by repeating Egs. C-3 through C-6 with this
new distribution.

This is the general stretched-exponential result that is used in the
text. Note that it is not necessary that ¥p be precisely of the form
given above for all values of 7, only that it be approximately of
that form over sufficient range of 7; and therefore of . Then the
stretched exponential will indeed be observed.

The Range of Observation Times is Important. It is intuitively
clear that the form of Vp(ry) at small values of 7, is unimportant
for observations made at long time 7. Intuition is indeed supported
by the detailed calculation: taking Vp(7;) to be a Gaussian centered
at nonzero time 7y,

1
N7 1—erf(rylo)

Vp(r)= e~lri=rel’,

inserting this expression into the integral, making the change of
variable 7;=x0, and using the saddle-point techmque as before
mdeed yields the stretch behavior asymptotically in the limit
1275 3/a2.

The observation time interval is of practical importance in si-
multaneous consideration of polarizing times and decay times. Eq.
7 can be rewritten as

M T( t p

A= <ade~Pridle > — < gB3e—(ort, toriglas, , - .(C-11)

where the notation < > has been used to denote the integrals over
P(a). In both borehole and laboratory NML measurements, it is
typically true that p7 1,3 p rt4; for example, in Fig. 5, tp, takes
values up to 10 seconds while 7 ; is less than 200X 10~ ~3 seconds.

Thus, the second average may be ‘‘more asymptotic”’ than the first.
Then performing the integration or average can produce different
stretch exponents for the two different time regimes that correspond
to the two different integrals. An even more thorough treatment
would produce a third stretch exponent because the second average
contains two exponent terms. However, the two-time-constant ap-
proximation shown in Eq. 8 does a very satisfactory job of fitting
the data of Fig. 8.

Authors’ Note

Corrections to this paper received after the publication deadline are
planned for publication in the March 1989 issue of SPE Formation
Evaluation.

S1 Metric Conversion Factor

degrees X 1.745 329 E~02 = rad
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