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ABSTRACT

The prediction of hydraulic conductivity K from nuclear
magnetic resonance (NMR) measurements has been performed
primarily in sandstones. In hydrogeological applications, how-
ever, unconsolidated material is more prevalent. Compared to
sandstones, unconsolidated sediments can show pore sizes up
to several millimeters. The known (semi-)empiric relations to
estimate K from NMR have been applied on this material,
but the underlying assumptions are not valid for large pores.
We formulated a new model, called the Kozeny-Godefroy
model. It is based on capillary pores with a single pore radius,
and accounts for bulk water relaxation and relaxation in porous
media under fast- and slow-diffusion conditions. The bulk-water
relaxation and slow-diffusion conditions significantly affect the

NMR measurements on coarse material. If the impact of the
bulk-water relaxation is well known and small, a maximum
K can be derived from NMR measurements by accounting
for the slow-diffusion case. The model replaces the empirical
factors in known relations with physical, structural, and intrinsic
NMR parameters. Focusing the calibration on material-specific
NMR parameters improves the prediction of K for similar
material. Measurements on well-sorted glass beads and natural
sands with different grain sizes are used for evaluation. These
measurements confirm the applicability of the new model and,
for coarse material, show the limit of the fast-diffusion-based
Seevers and Schlumberger-Doll-Research equations. The appli-
cation of our model is limited to (1) simple pore geometries, and
(2) materials with a small range of pore sizes.

INTRODUCTION

Permeability k, as a measure of the ability of a porous medium to
transmit fluids, is a fundamental property. It is highly complex and,
among other things, depends on the cross section dimensions of its
flow channels and the saturation of the material. In hydrogeological
applications, k is often replaced by the hydraulic conductivity (K),
which integrates the fluid properties’ viscosity and density, and
therefore describes the ease of water to move through the pore
space. The prediction of K is an important task in hydrology,
and it is fundamental for aquifer characterization and hydraulic
modeling. The Kozeny-Carman equation (Kozeny, 1927; Carman,
1938) is very popular and discussed in detail, e.g., by Carrier
(2003). For fully saturated conditions, it relates k to the surface-
to-volume ratio of tube-shaped flow channels.

For the prediction of k or K from geophysical measurements, the
method of nuclear magnetic resonance (NMR) has proved to be
very effective as shown, e.g., by Kenyon (1997). NMR can be ap-
plied in the laboratory, in the borehole, and from the earth’s surface.
The measured exponential relaxation signals (with relaxation times
T1 and T2) are the result of the interaction of protons in the fluid
with each other and with the matrix at the pore surface. This allows
relating the relaxation time T (s) to the specific inner surface, i.e.,
the ratio of the inner surface per volume of the pores. The amplitude
of the NMR signal is directly proportional to water content and
therefore porosity (Φ) in case of full saturation. There are several
(semi-)empiric formulas available to predict k from Φ and T.
Among others, the popular equations are those from Seevers
(1966) and Kenyon et al. (1988). The latter is commonly used
in rock physics and is known as the Schlumberger-Doll-Research
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(SDR) equation. Although these equations are established for sand-
stones, they may to some extent be used in shales (Josh et al., 2012),
limestones (Akbar et al., 1995), and poorly consolidated reservoir
sands (Kleinberg et al., 2003).
For many hydrological applications in the near subsurface, the

properties of unconsolidated sediments are of particular interest.
In contrast to sandstones, unconsolidated sediments may show pore
sizes up to several millimeters. The assumption of fast diffusion
(Brownstein and Tarr, 1979), which states that the selfdiffusion
of the protons is fast enough that the whole pore is sampled during
the relaxation process, may not be appropriate for such large pores.
Thus, the equations of Seevers (1966) and Kenyon et al. (1988),
which are based on this assumption, need to be revised. To predict
k, both equations need a calibration constant (C) which is estimated,
e.g., using flow experiments on samples in the laboratory. This con-
stant C merges matrix parameters, such as tortuosity, and intrinsic
material-specific NMR parameters. Converting these equations to
estimate K (e.g., Legchenko et al., 2002), which is more common
in hydrological applications, even highly temperature-dependent
fluid parameters such as dynamic viscosity are merged into C.
In this work, we combine the Kozeny-Carman equation for hy-

draulic flow in tube-shaped pores and NMR relaxation times pre-
diction as presented by Godefroy et al. (2001b) to a physical model
called the Kozeny-Godefroy model (KGM). The model implements
slow diffusion, accounts for bulk water relaxation, and directly im-
plements matrix parameters as well as temperature-dependent fluid
parameters.
In the following sections, we first give a review of the theory of

how to predict hydraulic conductivities and how to link them to
NMR measurements. This includes an overview of the commonly
used equations and their derivations. Next, we present KGM and
discuss the impact of the used model parameters. We evaluate
our model by data measured on well-sorted glass beads and quartz
sand with grain sizes ranging from fine sand to fine gravel. Finally,
we compare KGM to the commonly used SDR and Seevers equa-
tions and discuss its limitations.

REVIEW OF THEORY

The Kozeny-Carman equation

To predict the permeability k (m2) of an unconsolidated sample,
the equation of Kozeny (1927) and Carman (1938) can be applied
(e.g., Carrier, 2003). The equation is based on a simple model of
parallel tube shape pores with a radius rtube (m). Including a modi-
fication to estimate k (e.g., after Pape et al., 2006) the Kozeny-
Carman equation is given by

kKC ¼ 1

8τ2
Φr2tube; (1)

where τ is the (dimensionless) tortuosity and Φ the (dimensionless)
ratio of void to total volume.
Equation 1 can be converted from the original description of

tube-shape pores to other (matrix) geometries using an equivalent
surface-to-volume ratio S∕V (1∕m). Assuming smooth and spheri-
cal grains with a diameter dgrain (m), simple geometric considera-
tions lead to

rtube ¼
1

3

Φ
1 −Φ

dgrain; (2)

which allows for estimating k based on sieving analyses. We use the
effective grain diameter after Carrier (2003),

dgrain ¼ 1∕
X fi

d0.5li d
0.5
si

; (3)

where fi is the (dimensionless) fraction of particles between
the sieve-size dli and dsi (m), which are the respective sieve sizes
limits.
In hydrological application, k is often replaced by the hydraulic

conductivity K (m∕s), which integrates the fluid properties dynamic
viscosity η (Pa s) and density ϱ (kg∕m3) under the gravity accel-
eration (g ¼ 9.81 m∕s2). Under fully saturated conditions, K can
be written as

K ¼ ϱg
η
k: (4)

Because of the primary hydrological application in unconsolidated
material, we focus this work on the determination of K and adapt
the following equations appropriately. Apart from the temperature-
dependency ofK due to η and ϱ (see Table 1), most results presented
in this paper are equally true for k and can be transferred using
equation 4.

NMR relaxation times

NMR takes advantage of the phenomenon that an ensemble of
hydrogen protons exposed to a static magnetic field B0 (T) exhibits
a macroscopic magnetization M (A∕m) in thermal equilibrium that
is aligned with the direction of B0. During an NMR experiment,
electromagnetic pulses are used to rotate the direction of the mag-
netization by some angle. The return to equilibrium is described by
the Bloch equation (Bloch, 1946). Solution of the Bloch equation
yields two independent relaxation processes, one perpendicular, the
other aligned with the static field, and both of exponential character.
Accordingly, both are described by a time constant, the longitudinal
relaxation time T1 (s) for rebuilding the magnetization aligned with
B0, and the transverse relaxation time T2 (s) for the collapse of the
magnetization perpendicular to B0.
Seevers (1966) describes the relaxation time T1 by a sum of two

processes: the bulk relaxation TB (s) and a fast relaxation close to a
grain surface

1

T1

¼ 1

TB
þ rs

VS

VB
: (5)

The relaxation rate rs (1∕s) characterizes the layer that is in contact
with the grain surface, VS (m3) is the volume of water in this layer,
and VB (m3) is the pore volume. This relation links the NMR signal
to S∕V of the pore and therefore gives rise to hydraulic properties.
Note that TB is controlled by the self-diffusion constantD (m2∕s) of
water (Bloembergen et al., 1948). BecauseD again is a function of η
(Krynicki et al., 1978), TB and D are both temperature dependent.
Additionally, TB is influenced by the amount of dissolved oxygen
and ferromagnetic and paramagnetic ions, such as iron or manga-
nese (Bloembergen et al., 1948; Dunn et al., 2002). Therefore, TB

should be estimated directly on the extracted pore fluid and at the
same temperature if possible.
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Brownstein and Tarr (1979) introduce a simple diffusion model
linking the measured relaxation times T1 to pores with basic shapes
including tubes with radius rtube. The model contains the self-
diffusion constant D of water and surface relaxivity ρ (m∕s), but
neglects TB. The material-specific surface relaxivity ρ describes
the interaction of the protons with the pore surface. The authors
distinguish two limiting cases (fast diffusion and slow diffusion)
depending on the dimensionless sink-strength parameter

B ¼ ρrtube∕D (6)

and present an equation linking relaxation time to pore size sepa-
rately for each case.
The equation for fast diffusion (B ≪ 1) matches the formulation

of Seevers (1966) (equation 5) without TB. The dominant signal is
the first-order solution of the governing differential equations, i.e.,
the main mode (n ¼ 0). For a single water-filled pore, this results in
a primarily monoexponential signal. If a certain pore size corre-
sponds to a monoexponential signal, then a distribution of pore
sizes within one sample will lead to a measured multiexponential
signal, i.e., a distribution of relaxation times. Assuming a constant
ρ, this leads to a linear relationship between pore size and relaxation
time distribution. A logarithmic mean is commonly used to re-
present a T distribution (Dunn et al., 2002), i.e., to represent a sam-
ple by a mean pore size.
For the slow-diffusion case (B ≫ 10), however, the relation be-

tween the relaxation time and the pore size changes. The observed
NMR signal from a single pore becomes multiexponential due to
the higher-order solutions. The relaxation times of these higher
modes (n > 0) are significantly faster than the main mode and their
amplitudes sum up to a significant amount of the total signal for
increasing values of B. Consequently, in the case of slow diffusion,
an NMR T distribution may not be related to a pore radius distri-
bution. Thus, a logarithmic mean does not represent an mean pore
size of a sample. The region of intermediate-diffusion (1 ≤ B ≤ 10)
is not explicitly described by Brownstein and Tarr (1979).
While Brownstein and Tarr (1979) gave separate equations for

slow and fast diffusion, Godefroy et al. (2001b) find a solution that
describes the main mode (n ¼ 0) for the complete range of B, by
excluding very early times in the NMR relaxation, i.e., neglecting
higher modes (n > 0)

1

T1

¼ 1

TB
þ 1

rtube
2ρ þ r2

tube

4D

: (7)

Obviously, using the relaxation time of the zeroth mode to estimate
a pore radius is correct only if a single radius is present, i.e., a re-
laxation time distribution is due to higher modes and not due to a
distribution of pore sizes.
In addition to the described processes, the relaxation time T2 is

influenced by the movement of the protons in a magnetic gradient
field due to diffusion (Kleinberg and Horseld, 1990). However, this
effect is usually neglected when using CPMG pulse sequences (Carr
and Purcell, 1954; Meiboom and Gill, 1958) at low NMR frequency
and short pulse spacing. Under these conditions, T2 and T1 yield
identical pore size information (Kleinberg et al., 1993). We there-
fore refer the subsequent equations to T, which is valid for T2 only
under the described limitations, i.e., negligible magnetic field

gradients. But, because T1 ≥ T2, this leads to relaxation time
specific ρ.
To estimate ρ of a sample, fast-diffusion conditions are usually

assumed (e.g., Kenyon, 1997). The relaxation time T and the vol-
ume of the pores V are measured using NMR and the pore surface S
is measured independently using different methods, e.g., section im-
ages (e.g., Straley et al., 1987), hydraulic conductivity (e.g., Kenyon
et al., 1989), nitrogen adsorption, or NMR-diffusion measurements
(e.g., Hürlimann et al., 1994). All of these methods have their indi-
vidual sensitivities to the roughness of the pore surface, thus leading
to a wide variation of S and ρ, up to a factor of 10 and more. There-
fore, Kenyon (1997) introduces an effective or apparent surface
relaxivity ρa when relating NMR to hydraulic measurements. Con-
sequently, we use ρa for the samples presented in this study.

Hydraulic conductivity from NMR measurements

To predict k from NMR measurements, an analytic solution can
be achieved by combining the Kozeny-Carman (equation 1) with
equation 5 as presented by Seevers (1966). Including the fluid prop-
erties to predict K using equation 4 leads to the SB (Seevers includ-
ing bulk relaxation) model,

KSB ¼ CSBΦ
�

TBT
TB − T

�
2

: (8)

The same result can be achieved using Kozeny-Carman and the fast-
diffusion approximation after Brownstein and Tarr (1979), compris-
ing the matrix properties (ρ and τ) and fluid properties (ϱ, η, and g)
in the constant CSB ¼ ðϱgρ2Þ∕ð2ητ2Þ.
In analogy to Kozeny-Carman, but derived empirically, Kenyon

et al. (1988) present the SDR equation to predict k from NMR
measurements, which is based on several data sets measured on
sandstones,

KSDR ¼ CSDRΦ4T2: (9)

SDR and SB comprise several parameters as pore geometry and
surface relaxivity as well as temperature-dependent fluid parameters
into the empirical factors CSB and CSDR (m∕s3). These factors are
obtained from calibration measurements for each sandstone forma-
tion or material. Ranges for CSB andCSDR can be found in literature,
for sandy material summarized, e.g., by Mohnke and Yaramanci

Table 1. Physical properties of water and their dependency
from the temperature θ (°C). The equation for TB was
approximated by an empirical fit on continuous T2 mea-
surements during the warm up of tap water from 5°C to
35°C.

Parameter Equation Reference

TB (s) 3.3þ 0.044ðθ − 35Þ own T2
measurements

η (Pa s) ½1002; 797; 653� · 10−6 for
θ ¼ ½20; 30; 40�

tabular (Kestin
et al., 1978)

D ðm2∕sÞ 1.0413þ0.039828θþ0.00040318θ2 (Dunn et al., 2002)

ϱ ðkg∕m3Þ1000ð1 − θþ288:94
508929ðθþ68:12Þ ðθ − 3.98Þ2Þ (McCutcheon et al.,

1993)
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(2008) to predict K for a temperature of 10°C. Due to the limitations
or data sets used to estimate equations 8 and 9, we summarize them
as fast-diffusion approximations.
Other semiempirical approaches have been published by Timur

(1968) and Coates and Dumanoir (1973), which can also be traced
back to the Kozeny-Carman equation. Due to the lack of bound
water for the coarse and clay-free material of the presented samples,
Timur-Coates-like equations cannot be applied successfully and are
therefore not further discussed in this paper.
The presented SDR and SB differ (1) in the porosity exponent

(four and one) and (2) by neglecting and accounting for bulk relax-
ation, respectively. Note that the porosity exponent is subject to dis-
cussion (Kenyon et al., 1988; Mavko and Nur, 1997). The presented
samples in this work show minor variations of Φ. Thus, for the pre-
diction of K for presented samples, the porosity exponent has an
impact only on the calibration constant. Therefore, SDR and SB
primarily differ due to the influence of TB for long relaxation times.

KOZENY-GODEFROY MODEL

Derivation

To obtain a model to estimate K from NMR measurements on
unconsolidated material, we combine Kozeny-Carman (equation 1)
with Godefroy (equation 7), and convert them toK using equation 4.
Note that the main requirements of Kozeny-Carman and Godefroy
remain. The model is referred to as KGM,

KKGM ¼ ϱg
8τ2η

Φ
�
−D
ρ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D
ρ

�
2

þ 4DTBT
TB − T

s �2

: (10)

This allows to estimateK by (1) measuringΦ and T using NMR, (2)
adapting TB, η, D, and ϱ according to the sample temperature, and
(3) calibrating ρ and τ or assuming values from literature. The
sensitivity of KGM to its model parameters is discussed in the
following.

Sensitivity to model parameters

The KGM (equation 10) depends on several model parameters.
Some of them cannot be estimated by a simple NMR experiment but
need to be chosen using additional information. Apart from g, they
can be subdivided into sample or matrix specific parameters
(ρ;Φ; τ) and fluid parameters (TB; η; D; ϱ). To show their impact
on KGM, we discuss them individually, while the variation of
the fluid parameters are realized by temperature variation. As the
default model, we chose ρ ¼ 50 μm∕s, Φ ¼ 0.35, τ ¼ 1.5, and a
temperature of 20°C. These values are based on our observations
and expectations for clay-free unconsolidated material and are ref-
erenced and discussed in more detail in the respective paragraph.
The successive variation of one specific model parameter from
the default model is presented in Figure 1.
First, we discuss the impact of the surface relaxivity on KGM

(Figure 1a) and focus on the left part. For a given pore size,
e.g., resulting in K ¼ 10−3 m∕s, an increase in ρ has two effects:
(1) The measured relaxation time T of the main mode is reduced and
(2) the diffusion condition gradually changes from fast to slow
diffusion. Neglecting the impact of TB, the dependency of K from
T changes from K ∝ T2 for the fast-diffusion case gradually to
K ∝ T for the slow-diffusion case, where T is finally no longer
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Figure 1. Sensitivity of KGM to variation of the model parameters
surface relaxivity, temperature, porosity, and tortuosity (a-d). The
default values are marked by continuous lines. Regions of inter-
mediate (1 ≤ B ≤ 10) and slow diffusion (B ≤ 10) are shaded (a).

EN58 Dlugosch et al.



a function of ρ. This leads to a physical upper limit of K for a
measured T and Φ. With increasing impact of TB, i.e., for coarse
material, TB starts dominating T and therefore the estimation of K.
Consequently, we need to evaluate the impact of TB.
For a constant fluid chemistry, TB is controlled by the temper-

ature θ (°C). We used the temperature dependency for tap water
(see Table 1) and focus on the temperature range between 10°C
and 30°C (TB between 2.2 and 3.1 s), typical for the laboratory
and shallow field applications. Figure 1b shows that K of coarse
material can be estimated reliably only if TB is known. However,
temperature variations basically change the fluid viscosity η. On the
one hand, this change in η affects D, and therefore TB and thus the
NMR relaxation. For example, for lower temperatures, TB is shifted
to shorter relaxation times and D is reduced. Because smaller D
values directly lead to a reduction of B, the fast-diffusion approxi-
mation can be violated and higher modes may occur in smaller
pores. On the other hand, the viscosity change affects the macro-
scopic flow and therefore K. Nevertheless, temperature can be easily
measured in the laboratory and borehole or approximated for field
applications. Its impact on η, D, and TB can either be gained from
the literature or from separate measurements (e.g., see Table 1).
The expected range of porosity for unconsolidated, well-sorted,

and clay-free material is rather small. Because KGM uses a tube-
shaped pore model, porosity contributes linearly to K, thus leading
to relatively small changes (Figure 1c). Under fully saturated con-
ditions, Φ can be easily estimated from the amplitude of the NMR
signal.
Similar to Φ, the expected range of tortuosity for clay-free and

well-sorted unconsolidated material is small and leads to a small
shift in K (Figure 1d). However, for higher values of τ, as, e.g.,
found on sandstones, its effect can become significant due to its
quadratic term. For this study, a mean value of 1.5 was chosen that
lies between π∕2 after Bartell and Osterhof (1927) and

ffiffiffi
2

p
after

Carman (1956). It is also in good agreement with Pape et al.
(2006) who estimated τ ¼ 1.5 from NMR diffusion measurement
on glass beads.

METHODS

Sample material and preparation

To be able to provide samples of homogeneous material and grain
shape over a wide range of grain sizes (dgrain between 90 μm and

4.4 mm) we chose glass beads for evaluating the KGM. The beads
(Sigmund Lindner GmbH, Warmensteinach, Germany) consist of
soda lime glass with a chemical composition of mainly SiO2:
54.7%, Al2O3: 14.5%, CaO: 22.5%, and B2O3: 5.5%. The particles
are spherically shaped and split into samples with narrow grain-size
ranges as shown in Table 2. Additionally, a set of sand samples with
high quartz content (Euroquarz GmbH, Dorsten, Germany) but
natural grain shape is used to show the applicability of KGM to
predict K on natural material.
To be able to visually check the correct installation of the

material, we used a lucent polycarbonate sample holder with a
length of 110 mm and an inner diameter of 40 mm. The dimension
was chosen to be big enough to hold a representative volume of the
material but still fit in the coil of the used laboratory NMR.
The samples were saturated with degassed and deionized water to

which sodium chloride was added to reach an electrical conductivity
of 400 μS∕cm. The sample holder was first filled with the fluid and
then the grains were slowly added to the water column to prevent air
pockets. The material was gradually filled and compacted with a
pestle to achieve similar porosities.

Hydraulic conductivity measurements

To determine the hydraulic conductivity Kmeas of the samples, the
constant-head setup was applied. A fundamental assumption for this
experiment is to maintain laminar flow conditions, which is a chal-
lenge for coarse material. Therefore, Reynolds numbers for flow in
a tube and packed bed were estimated for each measurement. Addi-
tionally, the experiments were conducted with different flow rates
and checked for consistency. The temperature of the fluid was mea-
sured and Kmeas was corrected to a common temperature of 22°C
using equation 4 to make K consistent with the thermal equilibrium
reached during the NMR measurements. To estimate the error of
Kmeas, we used a quadratic propagation of uncertainty from all input
parameters. The results were compared to KKC (Figure 2) estimated
from sieving analyses using the Kozeny-Carman equation to predict
K (combining equations 1, 3, and 4) with τ ¼ 1.5� 0.1. To esti-
mate an error for KKC, we used the range of geometric parameters
dgrain and Φ measured on each sample. We observe a good agree-
ment between KKC and Kmeas within their error levels which
supports the use of the tube-shaped pore model for well-sorted,
clay-free material. The small trend to overestimate KKC might be

Table 2. List of the sample parameters: material, grain size, and porosity. Apparent surface relaxivity (ρa) and sink strength
parameter (B) of the samples derived from KGM using the individual measured Φ, Kmeas, and respective T1 or T2 values of
each sample. The range of ρa and B is derived from the error range of the input parameters.

Material dgrain (sieving) (μm) Φ (NMR) ( ) ρa (T2) (μm∕s) B (T2) ( ) ρa (T1) (μm∕s) B (T1) ( )

Glass beads 4400–3600 0.39 ∞− 0 ∞− 6.0 ∞− 0 ∞− 0.2

1650–1250 0.35 160–0 ∞− 1.5 160–0 11–0.7
500–250 0.38 54–38 2.8–0.8 43–30 2.0–0.6
150–90 0.37 66–55 0.9–0.4 42–35 0.6–0.2

Quartz sand 2000–630 0.41 297–0 13–0.9 232–0 13–0.2
1000–500 0.38 73–20 11–1.1 74–18 13–1.0
500–125 0.34 44–34 1.5–0.5 22–14 0.6–0.3
250–63 0.40 41–31 0.6–0.2 37–30 0.6–0.2
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due to an underestimation of S∕V assuming spherical and smooth
grains. An increase of τ to 1.7 might account for this. The value is
within the expected effect of the shape factor for nonspherical grains
as, e.g., reported by Carrier (2003).

NMR measurements

The NMR measurements were carried out using the Rock Core
Analyzer (Magritek, Wellington, New Zealand) which operates
at 2 MHz. We used the built-in cooling system to ensure a
constant sample temperature between 21°C and 22°C during the
measurements.
The T1-relaxation was measured by an inversion recovery experi-

ment using 50 logarithmically delays ranging from 0.01 to 15 s. To
determine T2, we used a CPMG pulse sequence with an echo spac-
ing of 200 μs which we sampled logarithmically to 500 data points.
To obtain a T1 (T2) distribution, we allowed for 150 (300) logarith-
mically spaced time bins from 0.01 to 10 s during the inversion.
Because TB is not only a function of temperature, but can be

altered by dissolved ions, we estimated TB separately for every
sample. Therefore, after the NMR experiments on the sample,
we extracted the pore fluid and measured T2 of the liquid.
Estimating a representative T or T-distribution of a sample is es-

sential to conclude on hydraulic properties using NMR. Figure 3
shows an exemplary T2-distribution derived by a smooth multiex-
ponential fitting (see, e.g., Whittall et al., 1991). A regularization
parameter λ is used to weight between minimum structure in the
T-distribution and minimum residual between measured data and
model response. For comparison, we show a single-pore mode
(SPM) fit after Ronczka et al. (2012). The SPM approach calculates
the first 10 modes of a single pore and adapts rtube and ρ accord-
ingly. Both smooth and SPM fit explain the data comparably well,
and therefore show that modes may not be ignored for coarse
material. Additionally, T of the main mode agrees well with the
maximum of the smooth distribution. This supports the assumption
that the presented sample can be described by a single pore radius
whose information is comprised in the maximum of the smooth dis-

tribution. Therefore, we use this maximum in analogy to Godefroy
et al. (2001a).
To estimate the error of the calculated T, we vary λ of the smooth

inversion to estimate the range of T which sufficiently explains the
measured data without leaving structure in the residual and signifi-
cantly increasing the misfit above the noise level. For the samples
presented in this work, the relative error of T is in the range of 0.05.

RESULTS

Evaluation of KGM

The results for the measured T2 and Kmeas on glass beads and
sand are presented in Figure 4. Contour lines of KGM for a range
of ρ from five to ∞ (μm∕s), a fixed mean sample porosity of 0.38,
and a fluid temperature of 22°C are plotted for comparison. The
value of TB ¼ 2.39 s has been estimated by separated NMR meas-
urement on all sample fluids. The two different sample types (sand
and glass beads) line up on respective contour lines of constant ρ.
This visual comparison is somehow limited because Figure 4 only
shows a mean KGM. It does not account for variations of Φ for
some samples of up to 0.03, and does not show the uncertainty
of the KGM due to the used input parameters. The uncertainty
of the KGM is mainly due to TB, with an error of�0.07 s estimated
from extracted sample fluids, and τ with �0.01 approximated from
Φ variation after Lanfrey et al. (2010).
To overcome these limitations, we calculated the surface relax-

ivity for every sample by rearranging equation 10 to solve ρ and use
the sample-specific values ofΦ. However, dealing with real samples
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with, for instance, unknown pore roughness, we refer to these val-
ues as apparent surface relaxivity ρa. The ranges of ρa, obtained by a
quadratic propagation of uncertainty for all input parameters, are
listed in Table 2. Examination of the value ranges suggest that
55 μm∕smight be a reasonable value for ρa when applying T2 mea-
surements on glass beads. For sand, the respective ρa seems to be
slightly lower (35 μm∕s). For T1, the respective ρa are ≈37 μm∕s
for glass beads and ≈30 μm∕s for sand. These values are in the
range of surface relaxivities found in the literature (see Table 3)
when NMR diffusion measurements and section images are used
to estimate S. The fact that the ρ for the glass beads presented
by Godefroy et al. (2001b) are significantly lower might be due
to the intense washing of the samples with hydrogen chloride,
which was not conducted in this work.

DISCUSSION

KGM compared to Seevers and SDR

To evaluate if other models might also explain the measurements,
we compare KGM (equation 10) with results obtained from SB
(equation 8) and SDR (equation 9). The results are displayed in
Figure 5. We use a TB of 2.39 s and measurements of Kmeas, Φ,
and T2 on the samples with smallest grain sizes to calibrate all equa-
tions by estimating a respective material specific ρ, CSB, and CSDR.
This sample was chosen for calibration because it most likely fulfills
the requirements where all equations are valid. For small values of
K and T, the contour lines of all equations are in good agreement in
shape (K ∝ T2) and value. But, using the calibrated equations to
predict K of more coarse but similar material, SB and SDR are
unable to explain the measured data. Under these conditions, two
effects with opposed signs determine the relation between T and K.
One effect is due to TB, which is, because Φ is constant, the only

difference between SB and SDR. The bulk relaxation time limits T
and leads to an underestimation of K if ignored. Its amplitude is a
function of T and becomes increasingly important for high T values.
Thus, a good knowledge of TB is essential for NMR measurements
on coarse material.
But the two facts, that (1) the measurements on the samples do

not line up with SB, and (2) that they show a material-specific
deviation from SB and SDR, is due to the violation of the fast-
diffusion approximation dependent on D and ρ. Because KGM ac-
counts for the limiting effect of D, which for larger pores leads to
higher T values than expected by the fast-diffusion approximation,
the measurements on samples with different grain sizes still line up
on a single contour line of ρ. The deviation between the measure-
ments on the samples and SB and SDR is, additionally, material
specific. For SB, the deviation is larger for glass beads compared
to sand. By estimating a material specific ρ value for KGM, the
measurements again line up on a single contour line of ρ. To quan-
tify the grain size where the fast-diffusion approximation is no
longer appropriate for the presented samples, we calculated B
for each sample using equation 6. Ranges of ρa are obtained from
KGM (see Table 2) and rtube are estimated from Kmeas using equa-
tions 1 and 4. These values indicate that for grain sizes larger than
approximately dgrain > 250 μm, B ≪ 1 is violated. Therefore, the
fast-diffusion approximation, and in consequence the application
of SB and SDR, is no longer valid.
Finally, the capabilities of KGM, SB, and SDR to predictK using

the sample specific Φ are shown in Figure 6. The model parameters

and error ranges were estimated as described in the section results.
All equations are calibrated on the sample with the smallest grain
size of each data set, respectively, and are consequently used to pre-
dict K for more coarse material as described before. Apart from the
violation of the requirement for SB and SDR, using coarse material
for calibration is also not recommended for KGM because of the
reduced resolution of ρa due to TB (see Table 2). After this calibra-
tion, KGM is able to predict K from Φ and from T2 and T1 over the
whole range of presented grain sizes from fine sand up to fine
gravel. For the presented samples, SB and SDR show systematic
deviations from the hydraulic measurements for coarse material
which result in an overestimation of K using SB and an underes-
timation using SDR.

Limitation of the flow model

The presented KGM is developed and validated assuming fully
water-saturated unconsolidated material and homogeneity at every
scale. As summarized by Carrier (2003), the application of Kozeny-
Carman-type equations is limited to laminar flow, not-too-wide
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Table 3. References for ρ estimated from T1 and S
measurements assuming fast-diffusion conditions. The
method used to estimate S as well as different sample
materials are listed.

Sample Methods for S ρ (μm∕s) Reference

Sandstones NMR diffusion 2.6–40 (Hürlimann et al., 1994)

Sandstones Section images 10–60 (Kenyon et al., 1989)

Sandstones Section images 30–300 (Howard et al., 1993)

Glass beads Section images 11.5 (Straley et al., 1987)
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grain size distribution, noncompact particle shapes, and no electro-
chemical reactions. The latter is why clayey material is not covered.
A tube-shaped pore model sufficiently explains the presented

data set of K measured on sand and glass beads using a theoretically
derived τ of 1.5 (see Figure 2). However, real pores do generally not
fit the assumptions of simplified pore geometries and smooth sur-
faces. To account for the impact of the deviation on K, τ can be
adjusted accordingly. A change of τ to 1.7 slightly improves the
prediction of K for the presented samples from the Kozeny-Carman
equation by reducing KKC. This change in τ leads to an increase of
ρa obtained from KGM by a factor of approximately 1.3. More
complex pore models may also explain the measured data, but
no analytic solutions of the governing equations are given for more
complex geometries. Other analytic solutions for planar and spheri-
cal pore geometries are given in Appendix A.

Limitation of the NMR model

The samples presented in this work were chosen to show a small
grain-size distribution to avoid the ambiguity that multiexponential
signals either arise from different pore sizes or higher modes. Using
the maximum of the T-distribution allows to find an adequate mea-
sure for a sample with a single-pore radius in the slow- and fast-
diffusion cases. If a material with a wide distribution of pore radii
is present, using only the maximum of the T-distribution will result
in ignoring the effect of pores which are not represented by this
maximum. Ignoring small/large pores will result in an over-/
underestimation of T and thus K. A common approach in SDR han-
dling wide distributions uses the logarithmic mean for T. Note that
this is appropriate only under fast-diffusion conditions.
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Additionally, one cannot exclude that multiexponential signals
may also be due to other effects like nonhomogeneous distribution
of surface relaxivities. An assumption for the governing NMRmod-
els (Seevers, 1966; Brownstein and Tarr, 1979; Godefroy et al.,
2001b) is that the relaxation of the protons at the pore surface is
homogeneous for the whole sample, i.e., it can be described by
a constant ρ. Small-scale variation of ρ within the diffusion length
of a water molecule, ≈

ffiffiffiffiffiffiffiffiffiffi
4DT

p
(Woessner, 1963), are averaged and

the relaxation process is effectively dominated by a mean surface
relaxivity (Foley et al., 1996). For the effect of a spatial distribution
of ρ on NMR measurements, see Grunewald and Knight (2011). In
this work, ρ is considered to be independent on frequency and tem-
perature, which might be an issue if measurements conducted under
diverging conditions are compared. Note, for material with a dis-
tribution of pore radii, the coupling of pores become important,
i.e., the diffusion of a proton from one pore to another during the
relaxation is relevant (Ramakrishnan et al., 1999). Because pore
coupling is not considered, samples with a distribution of pore radii
are not covered by KGM.

CONCLUSIONS

A new model, the KGM, has been presented and evaluated for
predictingK of unconsolidated material including coarse grains, but
limited to a narrow pore size distribution. KGM is in good agree-
ment with the commonly used fast-diffusion approximations, e.g.,
Seevers or SDR equation for fine-grained material. KGM allows for
improved prediction of K compared to SDR and Seevers for coarse-
grained material by including slow-diffusion case and bulk water
relaxation. At least for the presented samples, SDR and Seevers fail
to predict K for grain sizes larger than medium sand.
The model replaces the empirical calibration factors by intrinsic

NMR parameters (surface relaxivity, bulk-water relaxation time),
structural parameter (tortuosity), and physical parameters (self-
diffusion constant, dynamic viscosity, density, gravity acceleration).
This improves the quality of K predicted from NMR measurements
because the calibration with flow measurements focuses on the
matrix-specific parameters and therefore increases the range of val-
idity. The presented measurements of K and T on glass beads and
quartz sands confirm KGM. Because the estimation of surface relax-
ivities fromK and T using KGM does not account for surface rough-
ness, we refer to apparent surface relaxivities as intrinsic NMR
parameter combining surface relaxivity and roughness.We found val-
ues of ≈55ð37Þ μm∕s for glass beads and ≈35ð30Þ μm∕s for sand
T2ðT1Þ. Extensive laboratory measurements on different geologic
material may narrow the range of apparent surface relaxivities and
thus the range for predicted K using KGM without calibration.
The prediction of K using KGM is right now limited to (1)

materials with a small range of pore sizes due to the limitation
on estimating a single representative T and (2) simple pore geom-
etries like tube-shape, planar, or spherical pores.
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APPENDIX A

KGM FOR PLANAR AND SPHERICAL PORE
GEOMETRIES

The governing equations of KGM to describe the fluid flow
(equation 1) and the NMR relaxation time (equation 7) can be
adapted using an equivalent S∕V or are described for other basic
pore geometries (Godefroy et al., 2001b). This leads to

K ¼ ϱg
2τ2α2η

Φ
�
−D
ρ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D
ρ

�
2

þ 2αDTBT
TB − T

s �2

; (A-1)

where α ¼ 1, 2, 3 for planar, cylindrical, and spherical pores, re-
spectively. The impact on KGM is shown in Figure A-1. Changes
in α do not only lead to a small shift in the predicted K, which can
be compensated to some degree by adapting τ, but predominantly
affect the range of the slow-diffusion case, which increases with
increasing α.
For the presented data sets of glass beads and quartz sand, tube-

shaped pores (α ¼ 2) work best to find a constant material-specific
ρa for all samples. For glass beads, a spherical pore geometry
(α ¼ 3) might also explain the measurements within the error level,
but the ranges of ρa for the different grain sizes overlap to a lesser
degree. Planar pore geometry fails due to the reduced impact of the
diffusion. Further research might show if equation A-1 can be suc-
cessfully applied on samples with other pore geometries.
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