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ABSTRACT

The pore-size distribution (PSD) of geologic materials is an
important rock parameter to understand the flow of water in the
subsurface. PSDs can be obtained from sieving analyses, mer-
cury porosimetry measurements, and imaging techniques, but
none of these methods is available for in situ measurements.
Nuclear magnetic resonance (NMR) measurements are con-
trolled by rock parameters such as the surface-area to pore-
volume ratio. NMR is available for in situ measurements.
State-of-the-art NMR relaxation time measurements need a cal-
ibration of the surface relaxivity ρ to extract pore-size informa-
tion. State-of-the-art NMR diffusion measurements avoid the
calibration of ρ but are limited to small pores. We developed
an approach that estimates the average pore size without

calibrating ρ by means of incorporating higher order modes into
the signal interpretation of NMR relaxation times. We con-
ducted forward-modeling studies using an analytic solution
for cylindrical tubes, 2D finite-element simulations to incorpo-
rate fractal pore spaces, and laboratory experiments on synthetic
and natural samples. Our experimental data indicated that relax-
ation can occur outside the fast-diffusion regime not only for
coarse-grained materials, but also for fine- to medium-grained
unconsolidated sandy materials due to high surface relaxivities.
We found that the rock-fluid interface’s roughness had a signifi-
cant impact on the diffusion regime and led to an apparent in-
crease in ρ, which may cause intermediate or slow diffusion.
The methodology was limited to materials with a narrow
PSD and uniform distribution of ρ because we assumed multi-
exponential decay due to diffusion in single isolated pores.

INTRODUCTION

Knowledge of the subsurface’s hydraulic conductivity distribu-
tion K is a key to predict the flow of water through shallow aquifers
and porous media. Estimates of K are obtained using various per-
meameter realizations or analyses of pore sizes (Butler, 2005). Car-
rier (2003) gives handy formulas based on the work of Kozeny
(1927) and Carman (1939), reducing the particle-size distribution
to an effective hydraulic pore radius to estimate K, whereas Brooks
and Corey (1964) incorporate the complete pore-size distribution
(PSD) into their analyses. Common approaches to determine PSDs
use imaging techniques (Straley et al., 1987) or mercury porosim-
etry (Brakel et al., 1981). Alternatively, the pore surface area of a
sample can be measured by the Brunauer-Emmet-Teller (BET) ap-
proach to estimate an average pore radius (Keating and Knight,
2010). These techniques are not available for measurements from

the earth’s surface or during logging. In in situ studies, K can be
estimated using aquifer and slug tests. Multilevel slug tests, dipole-
flow tests, and borehole-flowmeter tests provide K as a function of
depth. These techniques suffer from limited depth resolution, long
screening intervals, long measurement times, and considerable
complexity in the data analysis and uncertainties (Butler, 2005).
Nuclear magnetic resonance (NMR) is a versatile tool in the

physical sciences, and it is well known for its imaging and spectros-
copy applications in medicine, chemistry, and the geosciences (Cal-
laghan, 2007). NMR instruments are available for laboratory
(Fukushima and Roeder, 1981), borehole (Dunn et al., 2002),
and surface-based (Dlugosch et al., 2011) geophysical applications.
Its sensitivity to 1H makes it an attractive method to determine the
water content of porous materials, and pore-size information can be
extracted by transforming the NMR quantities of relaxation time or
pore fluid self-diffusion. The transformation process from NMR
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quantities to pore-size information depends on a priori knowledge,
namely, assumptions on the material’s specific parameters and the
diffusion regime (Figure 1).
Relaxation in the fast-diffusion regime occurs when (1) the vol-

ume within the pore space covered by the Brownian motion during
relaxation is at least several times larger than the pore size (Brown-
stein and Tarr, 1979) and (2) a moderately homogeneous surface
relaxivity ρ throughout the pore space (Keating and Knight,
2012) can be assumed. In the fast-diffusion regime, a broad or mul-
timodal distribution of relaxation times (RTD), i.e., a multiexponen-
tial decay, translates to a broad or multimodal PSD, and a
monoexponential signal translates to a narrow PSD or a single
(average) pore size (see Figure 1). In conventional relaxation time
experiments, calibrating ρ is necessary to transfer RTD to PSD or
directly to K (Kenyon et al., 1988) because otherwise, RTDs only
indicate a certain relative distribution of pore sizes but do not re-
present true PSDs. An ideal field practice for calibration is to extract
a representative sample, conduct laboratory measurements, and ap-
ply the obtained calibration for the complete log (e.g., Coates et al.,
1999). More recently, Dlubac et al. (2013) compare different cal-
ibration methods, including laboratory measurements of samples,
logging data from pressure tools, and wellbore flow. Parsekian et al.
(2014) present results using the above-mentioned common hydro-
logic techniques, such as the multilevel slug test and a statistical

approach, to obtain calibration parameters for borehole applica-
tions. Outside the fast-diffusion regime, commonly referred to as
the slow- and intermediate-diffusion regimes, the situation becomes
more complicated; RTDs may not translate into PSDs because mul-
tiexponential decays can be observed from a single pore size due to
higher order relaxation modes (Brownstein and Tarr, 1979). More-
over, Keating and Falzone (2013) report difficulties developing a
calibration method to recover pore sizes from NMR RTDs.
To avoid calibration, pulsed-field-gradient (PFG) measurements

to determine the pore fluid self-diffusion coefficient (Stejskal and
Tanner, 1965) have been shown to provide an estimate of the aver-
age pore radius (Mitra et al., 1993; Hürlimann et al., 1994; Vogt
et al., 2002; Pape et al., 2006). Probing restricted diffusion using
PFG sequences is limited to cases in which the pore geometry has
an effect on the self-diffusion coefficient; i.e., the root-mean-
square displacement of a proton in the free fluid is larger than
the average pore size (Stallmach and Kärger, 1999). PFG-based
pore-size estimations can therefore be used when relaxation occurs
in small pores (mostly the fast-diffusion regime) but cannot pro-
vide information on large pores (mostly outside the fast-diffusion
regime). The technique has been extended to fixed-field gradients
(FFGs) because PFG sequences are not available in many in situ
logging tools (Hürlimann and Grin, 2000; Hürlimann and Venka-
taramanan, 2002; Hürlimann et al., 2002).

Figure 1. NMR relaxation and diffusion measurements (center) are used to deduce physical rock and fluid parameters (top). The T1 and T2
relaxation times are mono- or multiexponential. Different models are used to determine the porosity and PSD from the relaxation behavior, and
they depend on the diffusion (fast, intermediate, slow) regime. Diffusion measurements may be applied in a PFG or FFG mode and rely on
restricted-diffusion conditions. The overall goal is to provide the hydraulic properties of the subsurface from NMR during logging or from the
earth’s surface to investigate fluid flow and transport processes.
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In this contribution, we hypothesize that average pore sizes can
be estimated outside the fast-diffusion regime without the calibra-
tion of ρ. The method can be used for conventional relaxation time
measurements that are available for in situ experimental techniques,
such as for surface NMR and shallow groundwater NMR logging.
Recent developments have shown that reliable relaxation-time mea-
surements of T1 or T2 are feasible for surface NMR measurements
(Grunewald and Walsh, 2013; Müller-Petke et al., 2013).
We develop a forward modeling code based on the equations

given in Brownstein and Tarr (1979) and the following assumptions:
(1) the surface relaxivity ρ is homogeneous and (2) the pore
coupling and internal field gradients are negligible. Using this for-
ward code, we examine the ability of inverse modeling to extract
pore sizes without calibration from synthetic signals under the
assumption of narrow PSDs and multiexponential decay due to only
higher order modes. We evaluate whether pore sizes can be unam-
biguously estimated and what the corresponding uncertainties are.
Numerical 2D finite-element simulations (Lehmann-Horn et al.,
2007) are used to investigate the effect of an increasing inner surface
(fractal rock-fluid interface) of single pores and to evaluate if sur-
face roughness plays a key role in the departure from the fast-
diffusion regime. Theoretical considerations are validated via
laboratory experiments based on synthetic and natural unconsoli-
dated materials with different pore sizes and surface relaxivities.

NMR RELAXATION TIMES THEORY

Torrey (1956) presents a governing diffusion equation to calcu-
late the NMR relaxation time of a single water-saturated pore.
Brownstein and Tarr (1979) express solutions to this governing
equation for three simple geometries (planar, cylindrical, and
spherical) as a sum of n “normal modes.” These normal modes cor-
respond to orthogonal spatial eigenfunctions that build the solution
space to the diffusion equation transferred to an eigenvalue prob-
lem, with the inverse of the relaxation time being the eigenvalues.
For cylindrical geometry, the solution reads

Tn ¼ r2t ∕Dη2n; (1)

In ¼ 4J21ðηnÞ∕η2n½J20ðηnÞ þ J21ðηnÞ�; (2)

where Tn is the nth relaxation time, In is the relative intensity of the
nth relaxation time, rt is the radius of the cylinder, and J0;1 are
cylindrical Bessel functions of the zeroth and first order. The ηn
terms are the positive roots of

ηnJ1ðηnÞ∕J0ðηnÞ ¼ ρrt∕D; (3)

where D is the self-diffusion coefficient of the fluid and ρ is the
material-specific surface relaxivity describing the interaction of
the protons with the pore surface. Note that Brownstein and Tarr
(1979) refer in their original paper to the longitudinal relaxation
time T1. Because the equations are valid for the longitudinal and
transverse relaxation times T2 by assigning an individual surface
relaxivity ρ1;2, we decided to skip any subindex for simplicity here
and in the following.
Although Brownstein and Tarr (1979) neglect the relaxation time

of the bulk fluid TB, we extend equation 1 to

1

Tn
¼ 1

TB
þ Dη2n

r2t
: (4)

Incorporating TB is necessary if relaxation due to the interaction of
the protons with the pore surface is not significantly faster or even
slower than the bulk relaxation time. In particular, this is the case for
materials containing large pores (e.g., Dlugosch et al., 2013; Dlubac
et al., 2014) that are of interest for this study.
One major outcome of the work of Brownstein and Tarr (1979) is

summarized in Figure 2. Depending on the value of the term
κ ¼ ρrt∕D, three regimes are distinguished:

• Fast-diffusion regime: The NMR signals are approximately
monoexponential; i.e., the intensity of the zeroth mode is
close to one and all the other intensities are negligible.
Brownstein and Tarr (1979) give κ ≪ 1 as a criterion for fast
diffusion, whereas Ryu (2009) more explicitly gives κ ≤ 0.1.

Figure 2. NMR forward response according to Brownstein and Tarr
(1979) for cylindrical pores. The signal intensity and relaxation
times for the zeroth to second mode as a function of the tube radius
rt, surface relaxivity ρ, self-diffusionD, and bulk relaxation time are
shown in panel (b). The sketches in panels (a and c) for small and
large tubes qualitatively show the pathways of two hydrogen pro-
tons during relaxation (a) and the resulting time-dependent decay as
a superposition of the modes (c). The decay is monoexponential in
the fast-diffusion regime (small pores), whereas the decay is multi-
exponential outside the fast-diffusion regime (larger pores).
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• Intermediate-diffusion regime: The NMR signals are signifi-
cantly multiexponential; i.e., the contributions of higher
modes are nonnegligible, 1 ≪ κ ≪ 10.

• Slow-diffusion regime: The NMR signals are still dominated
by the zeroth mode, but the contributions of the higher
modes sum up to a few tens of percent, κ ≫ 10.

For this paper, we incorporate higher order modes into the data
analyses. Because the intermediate and slow-diffusion regimes
are assumed to show nonnegligible intensities for higher modes,
we refer to those two cases as being “outside the fast-diffusion
regime.”

Fast-diffusion regime

In the fast-diffusion regime, the solution for the zeroth mode (the
first root in the equation 3 and the main relaxation time) is (Brown-
stein and Tarr, 1979)

Tn¼0 ¼
rt
ρ
: (5)

Note that in equation 5, TB has been neglected. The value TB can be
neglected if, as commonly assumed for fast diffusion (e.g., Dunn
et al., 2002), TB is smaller compared to rt∕ρ. Nevertheless, there
are cases in which TB needs to be considered (Dlubac et al.,
2014). In any case, this relationship links the NMR relaxation time
to pore size. If a multiexponential signal is measured and fast dif-
fusion can be assumed, the RTD can be related to a PSD. However,
the relationship needs to be calibrated because ρ is unknown and
material specific.

Outside the fast-diffusion regime

Outside the fast-diffusion regime, RTDs cannot be easily linked
to different pore sizes because multiexponential signals arise from a
single pore volume. One extreme type of these conditions is slow
diffusion (κ ≫ 10). As discussed in Brownstein and Tarr (1979), the
zeroth relaxation time becomes independent of ρ, and, neglecting
TB, the pore sizes can be directly measured.
If we account for TB, the zeroth relaxation time may be close to

TB (Figure 2) and will therefore be difficult to use to estimate the
pore size. A closer look at the first and second modes, however,
reveals that the interpretation of these higher modes may also allow
us to estimate the pore size. These modes are also affected by TB,
but to a lesser extent as shown in Figure 2 and equation 4, where
Dη2n∕r2t dominates 1∕TB with increasing n. Assuming ρ and D are
constant, a change in rt impacts the relaxation times and intensities
of the higher modes. Thus, it appears attractive to evaluate whether
pore-size information can be extracted from NMR by accounting
for higher modes.

SIMULATION

Brownstein and Tarr cylindrical pore-space modeling

To evaluate whether higher modes can be used to interpret NMR
measurements, a forward algorithm has been developed based on
equations 1–4. This algorithm calculates an NMR signal for a given
cylindrical tube radius rt, surface relaxivity ρ, self-diffusion coef-
ficient D, and bulk relaxation time TB. We refer to a model that is

used to calculate a signal based on the formulation of Brownstein
and Tarr (1979) as a BT model.
For the synthetic study, one signal dobs is calculated for two BT

models with rt of 80 and 500 μm, ρ of 10 μm∕s and 100 μm∕s,
D ¼ 2.1e − 9 m2∕s, and TB ¼ 3 s. The signal is contaminated with
0.1% Gaussian noise; i.e., a random signal following the Gaussian
distribution with a standard deviation of 0.001 is added to the data.
This signal is then treated as the observed data. Next, the signals dest
are calculated by varying the material-specific parameters rt and ρ
while keeping the fluid parameters D and TB constant. The resid-
uals between dobs and dest display if other parameter sets of rt and ρ
generate similar data. We generate a map of the residuals over a
certain parameter range for rt and ρ to explore the correlations
of the parameters. We use error-weighted residuals χ2 to determine
if a model is acceptable. A χ2 of one indicates fitting the data within
the noise. We prefer χ2 because implementing appropriate error es-
timates is favorable for inversion (Günther et al., 2006).
Two BT models, the fast-diffusion regime (Figure 3a and 3c) and

the intermediate/slow regime (Figure 3b and 3d), are chosen to dis-
tinguish the two fundamental cases. Because the data are contami-
nated with noise, both cases have several parameter combinations
that fit the data within the noise level. This demonstrates the uncer-
tainty associated with noise contamination.
The data set described approximately by the fast-diffusion regime

(κ ¼ 0.38) is monoexponential within the data error; i.e., the am-
plitudes of the higher modes are negligible. Consequently, any com-
bination of rt and ρ that satisfies equation 5 and the conditions of
the fast-diffusion regime can explain the data set; i.e., rt and ρ are
strongly correlated (white dashed line in Figure 3). Only the maxi-
mum pore size can be obtained. Note that neglecting higher modes
to derive equation 5 is not applicable for noise-free data.
The multiexponential data set that is described by the intermedi-

ate/slow regime (κ ¼ 23) does not show this correlation between rt
and ρ. Because the data are contaminated with noise, there is some
uncertainty associated with the solution, but there is no inherent
correlation between the two parameters. A change in rt cannot
be compensated by a change in ρ. Therefore, the pore size could
be obtained from the measured data (white cross in Figure 3).
At this point, we would like to emphasize that this method is

based on fitting the decaying signal; i.e., we calculate the decaying
signal for the parameters rt, ρ, D, and TB and compare these data
with a measured decay. We do not fit the decaying signal to some
finite number of relaxation times (biexponential, triexponential,
: : : ) and analyze these extracted relaxation times as modes to find
the corresponding parameter; such an approach would introduce ad-
ditional uncertainty because two ill-posed problems (exponential
fitting and fitting for higher modes) need to be solved instead
of one.
Furthermore, we note that the presented approach of estimating rt

and ρ does not rely on a prior calculation of the diffusion regime.
The BT modeling delivers rt and ρ and their respective uncertain-
ties. The obtained uncertainties can be used to distinguish the dif-
fusion regimes because the correlation between rt and ρ decreases
when leaving the fast-diffusion regime.
Because we expect that the ability to infer the BT parameters

from the measured data depends on the signal-to-noise ratio
(S/N), we also carried out simulations for rt ¼ 300 μm, ρ ¼
100 μm∕s, D ¼ 2.1e − 9 m2∕s, and TB ¼ 3 s (leading to κ ¼
14), where the S/Ns were 100 (typical laboratory conditions), 10
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(achievable conditions for borehole measurements), and 1 (poor
borehole conditions). We found (Figure 4) that S/Ns down to 10
for this parameter combination still allow for reasonable estimates
of the pore size (200 < rt < 400 μm) and surface
relaxivity (70 < ρ < 110 μm∕s), whereas the un-
certainties rapidly increase for a lower S/N. This
uncertainty analysis was carried out by parameter
variation; i.e., a grid search was applied to find
all combinations of rt and ρ that satisfy the given
data for the different S/Ns. The results are not
that surprising because the total intensity of
the higher modes sums to approximately 10%
of the total signal intensity for this example.
Nevertheless, the methodology can be used to es-
timate parameters even when the data quality is
similar to that found in borehole measurements.

2D finite-element simulations account-
ing for rough rock-fluid interfaces

The analytical solutions given in Brownstein
and Tarr (1979) are derived for smooth interfaces
and simple geometries. To simulate the impact of
rough interfaces similar to those present in rocks,
we use a finite-element forward modeling (FEM)
code to solve the diffusion equation in (Brown-
stein and Tarr, 1979) in 2D (Lehmann-Horn et al.,
2007). We have simulated two cases: A (Fig-
ure 5a and 5b) and B (Figure 5d and 5e). Each
shares the same surface relaxivity ρ ¼ 10 μm∕s
and average pore size but differs in the roughness
of the pore rock-fluid interface by a factor of
three (see Table 1 for details). By comparing
the simulations for the two cases (Figure 5),
we found that increasing the interface roughness
leads to shorter relaxation times. This confirms
laboratory observations obtained from glass beads treated to in-
crease their surface roughness (Keating, 2014). Apart from the im-
pact on the mean relaxation time, case A (with the less rough
interface, Figure 5b) shows a nearly monoexponential decay,
whereas case B (with the rougher interface, Figure 5f) shows a mul-
tiexponential decay; i.e., the amplitudes of the higher-order modes
are larger.
Next, we calculated the controlling parameter κ to determine the

diffusion regime (Table 1). Analogous to the study of Keating and
Falzone (2013), we distinguish two radii, an upper and lower radius.
However, because the FEM simulations are 2D, our upper radius
rmax is calculated from a circle with an equivalent area to the pore,
whereas our lower radius rmin is calculated from the ratio of the
circumference to the area. Using rmax obviously gives the same
κ for both cases because the pore areas are similar. Using rmin, κ
decreases for case B as rmin decreases. Consequently, both types
of κ do not reflect the effect demonstrated by the simulation; the
intensity of higher modes is larger for higher roughness.
For demonstration purposes, we apply the cylindrical (3D) BT

inverse modeling scheme to the predicted NMR signals of our
2D fractal pore space. The synthetic decay signals are contaminated
with 0.1% Gaussian noise. First, we found that the FEM response
for both cases (A and B) can be sufficiently explained by smooth
models derived from BT modeling (Figure 5c and 5f). Second, the

FEM response for case A can be explained by several smooth mod-
els (dashed area in Figure 5c), in which the rt and ρ for these models
show a linear correlation as expected for fast-diffusion conditions.

Figure 3. Brownstein and Tarr (1979) forward response for two different tube radii rt
(80 and 500 μm) and surface relaxivities ρ (10 μm∕s and 100 μm∕s) in panels (a and b),
respectively. The modes’ intensities and relaxation times are given as crosses,
whereas the decaying signal is given as a solid line. The self-diffusion coefficient
(D ¼ 2.1e − 9 m2∕s) and bulk relaxation time (TB ¼ 3 s ) are the same in both cases.
The data are contaminated with 0.1% Gaussian noise equivalent to a signal-to-noise ratio
(S/N) of 1000. Panels (c and d) show the logarithm of the error-weighted residuals
log10ðχ2Þ (black to white refers to low and high; the numbers refer to the contour line
value) to the responses in panels (a and b) for variations in the surface relaxivity and tube
radius. The black dashed lines indicate the slow- and fast-diffusion regimes. The white
dashed line and the white cross indicate all parameter combinations of rt and ρ that
provide a data fit within the level of noise contamination (χ2 ¼ 1).

Figure 4. Parameter uncertainty for rt (a) and ρ (b) as a function of
the S/N. An S/N of 100 represents typical laboratory conditions,
whereas an S/N of 10 is achievable for borehole measurements
and 1 for poor borehole conditions.
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BT modeling cannot be used to determine an average pore size.
Third, the FEM response for case B can be explained by only a
few smooth models (white cross in Figure 5f) as expected for a dif-
fusion regime outside the fast-diffusion regime. BT modeling can
be used to determine an average pore size that matches the pore size
used for the FEM modeling, but the derived ρ ¼ 60 μm∕s is larger
than the value used in the model by a factor of 6. Even though a full
3D finite-element simulation was used for quantitative interpreta-
tion, this example highlights that pore roughness controls the dif-
fusion regime, which is in agreement with Sapoval et al. (1996).
Moreover, as commented by Kenyon (1997), Ramakrishnan et al.
(1998), and Kleinberg (1996), an apparent surface relaxivity ρa that
is a function of the true, material-specific ρ, pore roughness, clay
content, and nonsimple pore shapes controls the NMR relaxation

time. Considering this ρa of 60 μm∕s and the estimated pore radius
of about 140 μm, we obtain κ ¼ 4, which actually indicates diffu-
sion outside the fast-diffusion regime and agrees with the observa-
tions of the simulated signals.

LABORATORY MEASUREMENTS

Sample selection, preparation, and characterization

Because BT forward modeling is based on a single pore size, we
use samples from a very narrow PSD. We first choose glass beads to
create well-defined samples over a range of grain sizes (dgrain be-
tween 90 m and 4.4 mm). The beads (Sigmund Lindner GmbH,
Warmensteinach, Germany) consist of soda-lime glass with a

chemical composition of mainly SiO2, 54.7%;
Al2O3, 14.5%; CaO, 22.5%; and B2O3, 5.5%.
The particles are spherically shaped and split into
samples with a narrow range of grain sizes as
shown in Table 2. Secondly, sand samples with
a high quartz content (Euroquarz GmbH, Dors-
ten, Germany) but natural grain shapes are used
(Table 3).
In addition to selecting samples with different

pore sizes, samples showing different surface re-
laxivities and, in the best case, equal pore sizes
are worth considering. It has been shown that
surface relaxivity is a function of the amount
of iron oxides (Foley et al., 1996; Keating and
Knight, 2007). Two options are available to ex-
perimentally alter the surface relaxivity. Keating
and Knight (2007) realize this by conducting
measurements on clean sand samples and sand
coated with iron oxides. We select a natural sam-
ple originating from a drilling at the North Sea
island of Borkum, Germany, from approximately
2 m deep. We refer to this sample as the B1 sam-
ple. B1 is treated using an ammonium oxalate
process followed by a dithionite process to re-
duce the iron (III) oxides such as goethite, ferri-
hydrite, and maghemite to iron (II), which is
aqueous under the chemical conditions present
in this study. We use this procedure because it
is the least destructive to silicates (Mehra and
Jackson, 1960). We find an iron content of
500 mg∕kg or 0.05% for the original sample.
This iron content is not very unusual for natural
samples. The iron content is visible from the red-
dish color of the sample (Figure 6), and it is ap-
parent that there is less iron in the dithionite-
treated sample due to the change in color. B1
consists of medium to fine sand. Therefore, we
use this sample to first conduct measurements
on the original state and then treat the material
to dissolve the iron from the pore surfaces before
measuring again. Even though the mass percent
of iron used by Keating and Knight (2007) is sig-
nificantly higher, this approach should enable us
to conduct measurements on the same sample
material for different surface relaxivities.

Figure 5. Two-dimensional finite-element forward response for two cases (panels a
and d) with equal surface relaxivities (ρ ¼ 10 μm∕s), self-diffusion coefficients
(D ¼ 2.1e − 9 m2∕s) and bulk relaxation times (TB ¼ 3 s) but increasing the inner sur-
face by a factor of 3 in panel (d). In panels (b and e), the forward response is calculated
using FEM; the crosses give the mode intensity and relaxation time, and the solid line is
the decaying signal. Panels (c and f) show the logarithm of the error-weighted residual
log10ðχ2Þ (black to white refers to low and high; the numbers refer to the contour line
values) to the response of a BT model for variations in the surface relaxivity and tube
radius. The black dashed lines indicate the slow- and fast-diffusion regimes. The white
dashed line in panel (c) indicates all parameter combinations of rt and ρ that provide a
data fit within the level of data error (χ2 ¼ 1). The white cross in panel (f) presents the
best fitting model and corresponds to the black dashed circle in panel (d).
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We use the effective grain diameter after Carrier (2003):

dgrain ¼ 1∕
X fi

d0.5li d
0.5
si

; (6)

where fi is the (dimensionless) fraction of particles between the
sieve sizes dli and dsi, which are the respective sieve size limits.
This effective grain diameter and the sample porosity Φ allow
the average pore size of each sample to be calculated (e.g., Dlu-
gosch et al., 2013):

asieve ¼
1

3

Φ

1 − Φ
dgrain: (7)

Experimental setup

To visually check the packing of the material, we use a translu-
cent polycarbonate sample holder with a length of 110 mm and an
inner diameter of 40 mm. The dimension is chosen to be large
enough to hold a representative volume of the material but still
fit in the coil of the laboratory’s NMR system. The samples are
saturated with degassed and deionized water with sodium chloride
to reach an electric conductivity of 400 μS∕cm to
minimize unwanted dissolution processes. The
sample holder is first filled with fluid, and then
the grains are slowly added to the water column
to prevent air pockets. The material is gradually
filled and compacted with a pestle to achieve
similar porosities.
The NMR measurements are carried out using

the Rock Core Analyzer (Magritek, Wellington,
New Zealand), which operates at 2 MHz. We use
a CPMG pulse sequence with an echo spacing of
200 μs. Because the diffusion relaxation rate TD

is neglected in equation 4, measurements at dif-
ferent echo spacings are carried out to confirm
that this assumption is valid for our samples at
an echo spacing of 200 μs. We use the built-in
cooling/heating system to ensure a constant sam-
ple temperature between 21°C and 22°C during
the measurements. Because TB is not only a
function of temperature and can be altered by
dissolved ions, we estimate TB separately for
every sample. Therefore, after the NMR experi-
ments on the sample, we extract the pore fluid
and measured T2;B of the liquid. We find T2;B ¼
2.4� 0.1 s for all samples.

Pore size estimation for glass beads

Selecting two samples of different grain sizes,
we present the results for the glass beads. First,
the measured data dobs (Figure 7a and 7d) are fit
to the common multiexponential approach to de-
rive a smooth RTD (Figure 7b and 7e). A regu-
larization parameter λ is used to weigh the
minimum structure in the RTD and minimum
residual between the measured data and model
response (see, e.g., Whittall et al., 1991). The

data are preintegrated into 500 logarithmically spaced time bins.
We allow for 300 logarithmically spaced relaxation time bins from
0.01 to 5 s during the inversion. We use an error-weighted inversion

Table 1. FEM modeling parameter: upper rmax and lower
rmin radius describing a circle with an equivalent area of the
pore or based on the ratio of the circumference to the area,
respectively; the controlling parameter κ is typically used to
obtain the diffusion regime.

Case A Case B

ρtrue (μm∕s) 10 10

TB (s) 3 3

Circumference c (μm) 1422 4495

Area a (μm2) 51,119 53,750

rmax ¼
ffiffiffiffiffiffiffiffi
a∕π

p
(μm) 127 130

rmin ¼ 2 · a∕c (μm) 71 23

κðρtrue; rminÞ 0.34 0.11

κðρtrue; rmaxÞ 0.6 0.6

Table 2. List of sample parameters as derived from the sieving and NMR
analyses for the set of glass beads.

Material dsievinggrain (μm) ΦNMR rsievingpore (μm) rNMR
pore (μm) ρ (μm∕s)

Glass beads 4400–3600 0.39 930–760 630–710 330–170
1650–1250 0.35 300–225 350–250 110–85
500–250 0.38 100–50 110–90 140–100
125–100 0.37 23–18 <30 <270

Table 3. List of sample parameters as derived from the sieving and NMR
analyses for the natural sand samples.

Material dsievinggrain (μm) ΦNMR rsievingpore (μm) rNMR
pore (μm) ρ (μm∕s)

Quartz sand 2000–630 0.41 450–150 400–300 300–150
1000–500 0.38 200–100 170–155 320–250
500–125 0.34 85–21 80–72 170–120

Figure 6. Microphotography of the B1 samples (a) before and (b) after chemical treat-
ment to dissolve free iron.
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scheme (Günther et al., 2006) to account for the logarithmic data
preintegration that changes the error for each time bin. Using this
approach, the data are fit within the acceptable level of data error (to
avoid overfitting), and no structure remains in the error-weighted
residuals that would indicate unexplained data. Therefore, the resid-
uals for the RTD display a benchmark for the BT modeling. Second,
similar to the synthetic study, the BT model parameter space of rt
and ρ is varied to calculate the estimated data dest, and the residuals
between each dest and the measured data are calculated (Figure 7c
and 7f). The best-fitting BT models are indicated by the area framed
by a white dashed line. All the models within this area satisfy the
measured data as well as the RTD (detailed residuals for each of the
BT models are given for comparison in Figure 7a and 7d). The two
samples represent the two cases as discussed for the synthetic ex-
amples: a first case with small grain sizes that does not show a dis-
tinct minimum and therefore shows a strong correlation with rt and
ρ and a second case that shows a distinct minimum and allows the
pore radius to be directly estimated. For a comparison to the T2

distribution, the higher order modes are given in Figure 7b and
7e. Note that we scaled the amplitudes of the RTD such that the
maximum of the RTD matches the amplitude of the zeroth mode.
Without scaling, the amplitudes of all the relaxation time bins for

the RTD and the amplitudes of all the modes sum up to the same
total water content of the sample. Thus, the amplitudes of the RTD
are necessarily far below the modes. To ease the comparison, we
prefer to scale the RTD. For a comparison of the RTD and the
modes, one should keep in mind this scaling and the fact that each
mode amplitude reflects a certain area of the RTD. Thus, the am-
plitudes and relaxation times of the modes nicely match the distri-
bution. The relaxation time of the zeroth mode and the maximum of
the RTD are very close in both cases. Concerning the second case
(Figure 7e), the left-side tail of the RTD is represented by the higher
order modes. However, the most important observation for the sec-
ond diffusion case outside the fast-diffusion scheme is an average
pore size of 350–250 μm, which is well within the estimated pore
size of 310–270 μm derived from the grain sizes from the sieving
analyses (Table 2). In addition to the pore size, we obtain ρ within
the interval of 110 − 85 μm∕s. Table 2 summarizes the results for
all samples, showing the grain size, porosity, pore size derived from
sieving, pore size derived from NMR, and the corresponding sur-
face relaxivity ρ. All measured data can be explained by the BT
modeling within the level of noise and is therefore similar to the
data fit obtained from a standard T2 distribution. Overall, a good
agreement between the pore sizes obtained from NMR and from

the grain sizes is achieved.

Pore size estimation for natural sand

Figure 8 illustrates the detailed results for one
sample of natural sand, and the results for all
measured samples are summarized in Table 3.
The residuals between the measured data and
each BT model (Figure 8c) have a significant
minimum. The residuals (light gray in Figure 8a)
for the best fitting BT models (indicated by the
area framed by a white dashed line in Figure 8c)
do not show any remaining structure, indicating
an acceptable data fit. The deviations (dark gray)
in a standard T2-distribution are within the same
range. Thus, BT modeling for this natural sand
sample is able to sufficiently explain the mea-
sured data within the measurement error and
equally well compared to an RTD. The average
pore sizes, which are as important as the data fit,
are again well within the results of the sieving
analyses (Table 3), enabling BT modeling to pre-
dict pore sizes from NMRmeasurements without
any calibration.

Reliability of pore-size estimations

We select the measurements of the B1 sample
to evaluate the reliability of the pore-size estima-
tion procedure and to test whether multiexponen-
tial decays are due to the diffusion conditions or
to the PSDs. The measured data (Figure 9a) of
the original sample are significantly multiexpo-
nential, and the distribution shows a tail at
shorter times. The measured data (Figure 9d)
after treatment clearly show the impact of the
change in ρ caused by the changing content of
paramagnetic iron. The decay of the obtained

Figure 7. RTDs and BT modeling for two samples of glass beads with grain sizes rang-
ing (a-c) from 125 to 100 μm and (d-f) from 1650 μm to 1250 μm. The measured data
(black), residuals of the forward response from the best fitting BT modeling (light gray),
and T2 distribution (gray) for the measured data in terms of the error weighted misfit are
shown in panels (a and d). The BT model (black crosses) and T2 distribution (solid line)
are presented in panels (b and e). Panels (c and f) show the logarithm of the error
weighted residuals for different BT models. The black dashed lines indicate the slow-
and fast-diffusion regions. The white dashed line indicates all parameter combinations of
rt and ρ that provide a data fit within the level of the data error.
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data is significantly slower compared with that of the original sam-
ple. The T2 distribution looks remarkably different. The tail of short
relaxation times has disappeared. However, the sample has not been
significantly changed despite the dissolution process. Therefore, the
change in the data is due to an increase in higher order modes.
The BT modeling nicely reflects that the pore size did not change;

rather, ρ changed due to the dissolution process. The pore sizes es-
timated from the data of the two samples are approximately 50 and
70 μm, respectively, and are well within the results from the grain
size analyses (Table 4). However, one would give significantly dif-
ferent PSDs for each sample based on the RTDs, especially in terms
of the amount of fine grains. Moreover, as expected due to the de-
crease in paramagnetic content on the pore surface, the best fitting
BT models estimate ρ to be 600 μm∕s for the original sample and
120 μm∕s after the sample is treated. The treated sample is close to
fast-diffusion conditions as expected from the grain size and follow-
ing a treatment that decreases surface relaxivity. We are, in fact,
surprised to be still able to extract some information even though
the uncertainties increased. Note that the data fit for the original
sample is not as perfect as for all other samples. We think that this
is most likely caused by a nonuniform distribution of surface re-
laxivity.

DISCUSSION

Pore roughness, apparent surface relaxivities, and dif-
fusion regime

We show that average pore sizes can be obtained directly from
NMR data using a BT modeling approach if relaxation occurs out-
side the fast-diffusion regime. In addition to rt, ρ controls the dif-
fusion regime, but the values of ρ observed for the data presented
are unusually high, implying a slow- or intermediate-diffusion re-
gime for pores typically assumed to be in the fast-diffusion regime.
Consequently, we discuss these high surface relaxivities below.
Because ρ is an NMR intrinsic parameter, neither independent

nor direct measurement techniques that can determine the value
of ρ are available. Common procedures that determine ρ are based
on the NMR measurement itself. Measuring the surface-area-to-
pore-volume ratio (S/V) using, for instance, BET and assuming fast
diffusion, ρ is calculated from the relaxation time using (Foley et al.,
1996)

1

T
¼ ρ

S
V
: (8)

If the pore surface is smooth and of simple geometry, S/V can be
transferred to a mean pore size, and the diffusion case can be cal-
culated using the cases presented by Brownstein and Tarr (1979).
However, if rough pore surfaces are present, ρ can be calculated
using equation 8 to give the value for the surface relaxivity; how-
ever, according to the fractal surfaces implemented by our simula-
tions, the diffusion case cannot be calculated by means of ρ and a
mean pore size. In fact, it is necessary to account for pore rough-
ness. We show preliminary attempts to explain the simulated data
using smooth surfaces, an average pore size and a higher apparent
surface relaxivity. Following this, the given surface relaxivities in
this paper are the apparent surface relaxivities ρa and cannot be di-
rectly compared with the ρ derived from the S/V because the former
are obtained from a method sensitive to pore roughness. Avery sim-

ple example based on the results published by Keating and Knight
(2010) appears illustrative. Using the S/V for a sample of quartz
grains, the authors derive a pore radius of approximately 2 μm from
BET measurements; based on a grain radius of 200 μm, simple cu-
bic packing leads to a pore radius of approximately 150 μm. Thus,
compared to a smooth surface, the real pore surface is increased by a
factor of 75. This factor may explain the differences in ρ given in
their paper and those written here.
The factor of 75 appears high but not impossible following the

research on pore roughness published by Stallmach et al. (2002) and
Pape et al. (2006). They give pore roughness in terms of the fractal
dimension and report values ranging from 2.26 to 2.46 for sand-
stones and 2.2 for glacial sand deposits. Using the fractal dimen-
sion, a ratio between the BET-measured surface-area SBET and
the smooth surface obtained from the grain analyses or flow experi-
ments Sgrain is calculated as (Pape et al., 1999, 2006)

SBET
Sgrain

¼
�
λBET
λgrain

�
2−Dfrac

; (9)

Figure 8. RTDs and BT modeling for a sample consisting of natural
sand with grain sizes ranging from 2000 to 630 μm. The measured
data (black), residuals of the forward response from the best fitting
BT modeling (light gray) and T2 distribution (gray) for the mea-
sured data in terms of the error weighted misfit are shown in panel
(a). The BT model (black crosses) and T2 distribution (solid line)
are presented in panel (b). Panel (c) shows the logarithm of the er-
ror-weighted residuals for different BT models. The black dashed
lines indicate the slow- and fast-diffusion regimes. The white
dashed line indicates all parameter combinations of rt and M that
provide a data fit within the level of the data error.

NMR average pore-size estimations D203



where λBET is the minimum length resolved by the BET
(3 · 10−10 m); λgrain is the minimum (pore) length from the grain
analyses, i.e., the minimal pore size; and Dfrac is the fractal dimen-
sion. Considering λgrain ¼ 150 μm as above, Dfrac would need to be
2.33 to obtain a factor of 75, whereas assuming Dfrac to be 2.2 re-
sults in a factor of 14. Our numerical example shows an impact of
pore roughness on the relaxation time and diffusion regime by a
factor of 3. This emphasizes the need to develop appropriate equa-
tions that include pore roughness (or fractal dimension) when cal-
culating the diffusion regime.

Multiexponential decays, nonuniform surface
relaxivities, and narrow PSDs

In addition to high (apparent) surface relaxivities, we expect a
dispute arising from the ambiguity of multiexponential relaxation
caused by the PSD, higher order modes, or inhomogeneous distri-
bution of surface relaxivity. We show multiexponential signals
caused by higher order modes. However, in many cases, the multi-
exponential signals are due to broad PSDs. We limited this study to
samples of small grain size distributions to avoid this ambiguity. In
practice, this reflects the need of strong a priori knowledge and

shows that one should look at the error connected
with assuming the wrong case. Moreover, what
happens in the most general case (see Figure 1)
of a sample that exhibits relaxation in larger
pores outside the fast diffusion regime and
smaller pores within the fast-diffusion regime?
We controlled the PSDs by selecting appropri-

ate samples with narrow PSDs. Alternatively, we
had no control on the distribution of surface re-
laxivity. Multiexponential relaxation may also be
due to nonuniform distributions of surface relax-
ivities in the pore space. Following Keating and
Falzone (2013), ρ is assumed to be homogeneous
as long as the distance between two paramag-
netic sites lr is small relative to the distance that
a proton can travel within the time scale of an
NMR measurement lD. They calculated lD usingffiffiffiffiffiffiffiffiffiffi
6DT

p
, where T is the bulk relaxation time. For

the samples presented in this study, lD is approx-
imately 180 μm. Consequently, for samples con-
sisting of pores that are smaller than 180 μm,
multiexponential relaxation should not be caused
by nonuniform ρ distributions.
Nevertheless, multiexponential data caused by

a nonuniform ρ distribution may be present for
samples consisting of pores that are larger than
180 μm. However, we are able to explain these
samples by higher modes using reasonable pore
sizes. We argue that it is unlikely that the nonun-
iformity of ρ would be exactly such as to gener-
ate relaxation times matching those of the higher
modes. The different values of ρ would have to
be distributed in the pore space such that the re-
laxation times and amplitudes match the higher
modes. Nevertheless, this is only an indication
and no rigorous proof, but further investigation
is beyond the scope of this paper. Therefore,
we emphasize that research on this topic is nec-
essary. One may extend the numerical simula-
tions presented here by assigning different
values of ρ to the boundaries and implementing
multiple pores and pore throats connecting these
pores. This numerical approach would also allow
us to investigate the pore coupling assumption
made in this study. One may also continue the
laboratory study of Keating and Knight (2012)
on the spatial variability of ρ and pore coupling
by applying our methodology to these types of
prepared samples. We recommend that this study

Figure 9. RTDs and BT modeling for the B1 sample (a-c) before and (d-e) after dis-
solving free iron. The measured data (black), residuals of the forward response from the
best fitting BT modeling (light gray), and T2 distribution (gray) for the measured data in
terms of the error weighted misfit are shown in panels (a and d). The BT model (black
crosses) and T2 distribution (solid line) are presented in panels (b and e). Panels (c and f)
show the logarithm of the error-weighted residuals for different BT models. The black
dashed lines indicate the slow- and fast-diffusion regimes. The white dashed line indi-
cates all parameter combinations of rt and ρ that provide a data fit within the level of the
data error.

Table 4. List of sample parameters as derived from the sieving and NMR
analyses for the B1 sample.

Material dsievinggrain (μm) ΦNMR rsievingpore (μm) rNMR
pore (μm) ρ (μm∕s)

B1 original 300–100 0.41 70–23 60–45 1000–150
B1 treated 300–100 0.39 63–21 100–40 200–50
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be treated as a starting point with significant limitations but high
potential for further improvements.

CONCLUSIONS

We present an approach to estimate the average pore size for
coarse-grained unconsolidated material by means of incorporating
higher order modes in NMR decay time interpretation. This is rel-
evant for in situ NMR experiments such as surface NMR or shallow
NMR logging, in which PFG or FFG sequences are unavailable and
one operates outside the fast-diffusion regime. A forward modeling
study was carried out to show that the pore size can be obtained
from measured relaxation times without calibration outside the
fast-diffusion regime. A 2D finite-element fractal pore-space mod-
eling example demonstrates that an apparent increase in the surface
relaxivity can be observed when the roughness of the rock-fluid
interface is increased. We found that pore roughness has a signifi-
cant impact on the relaxation time and the diffusion regime. In
agreement with others, we refer to an apparent surface relaxivity
when surface roughness is neglected in the model. Measurements
of glass bead and natural sand samples encompassing a small spec-
trum of grain sizes confirm that the presented approach can be ap-
plied to natural unconsolidated material. In addition to providing
estimates of the pore sizes, measurements of a sample before
and after it was treated to dissolve iron show that this approach
can be used to estimate the surface relaxivity. The methodology
is limited to material with a narrow PSD and a uniform distribution
of ρ because we assume that the multiexponential decay is due only
to higher order modes and not to an arbitrary PSD or nonuniform ρ
distribution.
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