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REVIEW ARTICLE

Exponential analysis in physical phenomena

Andrei A. Istratov® and Oleg F. Vyvenko
Institute of Physics of St.-Petersburg State University, Ulianovskaya 1, St. Petersburg 198904, Russia

(Received 13 July 1998; accepted for publication 16 November)1998

Many physical phenomena are described by first-order differential equations whose solution is an
exponential decay. Determining the time constants and amplitudes of exponential decays from the
experimental data is a common task in semiconductor phydesp level transient spectroscopy
biophysicsfluorescence decay analysisuclear physics and chemistnadioactive decays, nuclear
magnetic resonangechemistry and electrochemistfseaction kinetickand medical imaging. This
review article discusses the fundamental mathematical limitations of exponential analysis, outlines
the critical aspects of acquisition of exponential transients for subsequent analysis, and gives a
comprehensive overview of numerical algorithms used in exponential analysis. In the first part of
the article the resolution of exponential analysis as a function of noise in input decays is discussed.
It is shown that two exponential decays can be resolved in a transient only if the ratio of their time
constants is greater than the resolution limit, which can be explicitly calculated from the
signal-to-noise ratio in the transient. Although the signal-to-noise ratio is generally limited by the
sensitivity of the equipment, it is shown that digitalization of the decays may be a major source of
noise. The requirements for type of analog-to-digital converter, number of digitized data points and
duration of digitized transients, which must be met to obtain the theoretical resolution limit and to
improve stability of the exponential analysis, are formulated. The second part of the review article
gives an overview and comparison of major numerical techniques of exponential analysis, such as
the nonlinear least squares fit, the Prony method, the method of modulating functions, the method
of moments, the Laplace—Pad@proximation, the Tikhonov regularization method, the Gardner
transformation, the method of maximum entropy and others.1999 American Institute of
Physics[S0034-674809)04502-5

I. INTRODUCTION: EXPONENTIAL RELAXATION IN tivistic heavy-ion experiments in nuclear physics, photon
PHYSICS correlation spectroscopy, studies of fluorescent decays in

biophysics, studies of sedimentation equilibrium, nuclear

First-order _d|ffer_ent|:I (_equanr(])ns arel amr?ng ;[]he mos‘i’nagnetic resonance in chemistry and medical imaging, and
icnocr:]emagg i?u;éggzs'g %fyaSIi:Zr;ir?:‘uipcgignwo?rt]if:m; :?e o&eterm_ination of molecular §ize distributions from laser light
ronortional to the valud itself scatterlng_data,_just to men'uo_n a fevv_. Exponepnal decays are
brop ' common in solid state physiésmedicine?=® biology and
df(t) biophysics’ 1 geophysic¥ 8 optics!® engineering® chem-
g~ M. (1) istry and electrochemistr}. 28
The amplitude of the exponential decAyand the decay
The solution of this equation is an exponential decay of theate\ carry information about the nature of the phenomenon
form being studied. The amplitud& usually corresponds to the
. initial concentration of the decaying species, and the decay
f(t)=Aexp(—A)+B, ) rate N is frequently determined by the energy change in-
whereA is the decay amplitudd is a constantthe baseline Vvolved in the transition from one state of the system into
offset, and\ is the decay ratéalso called decay constant, or another. Analysis of exponential decays given by &.is
rate constant which is inversely proportional to the time straightforward and would not, by itself, deserve a special
constant of the decay, A= 1. Examples of application of discussion. However, it commonly happens in physics that a
Egs.(1) and(2) are analysis of radioactive decays, ultrarela-number of exponential processes take place simultaneously,
and experimental equipment yields a signal which is a sum
dpresent address: University of California at Berkeley, LBNL, Mailstop of several EXponemlal components. In this Case’ one h"?‘s 10
62349, 1 Cyclotron Rd., Berkeley, CA94720; electronic mail: SOlve @& mathematical problem of decomposing a multiple
istratov@socrates.berkeley.edu exponential into its constituent parts. This task is not as
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simple as it may appear at first glance. In fact, it is one of thdl. CLASSIFICATION OF PROBLEMS TO BE SOLVED
oldest and yet most persistent problems of functional analylN EXPONENTIAL ANALYSIS

sis. As early as 1795, Profiydevised an algebraic scheme This review article deals with the numerical analysis of

that could separate a small number of exponentials withy, o rimentally measured decaying functions of tifi(é)

similar amplitudes but substantially different time constants,nich stem from the processes described by the exponential

The method, however, did not differentiate well between exjay, However,f(t) is not necessarily described by a single

ponentials with close time constants. Prony recognized thigecay rate. In this treatment, we will emphasize three cases

limitation as fundamental, and many modern autffsts  of exponential analysis. In the simplest case, further referred

have echoed this view. to as “monoexponential analysis,” the transient is assumed
The authors of this review article have been involved into be a single exponential, which is characterized by the

investigations of electrical activity of defects in decay amplitudé\ and decay rate.:

semiconductor$-3 us3i4ng the method of deep level transient ¢ 1\ x gy y1). B

spectroscopyDLTS).>* This method extracts information on

deep level defects from the measurements of capacitance dhe decay may also contain a baseline ofets in Eq.(2).

the reverse-biased Schottky diode. The reverse bias is alterdost algorithms discussed in this review article require the

periodically, which results in capacitance transients. A majoPaseline offset to be subtracted before analysis. Therefore,

part of DLTS data evaluation is the exponential analysis ofV€ Will assume in the followingexcept where specified ex-

these transients. The increasing requirements for resolvinglicitly) that the baseline offsé&=0. ,

closely spaced deep energy levels with similar decay tim If the decay cpnglsts of a sum ofgxporil‘ennqls of the

constant®=%" stimulated the development of advanced nu- o' Eq.(3), we VY"" discuss the analysis of .,r’nuluexponen-

merical algorithms for DLTS data analysis. Our Iiteraturetlals decays,” or “multiexponential analysis:

survey revealed that the problem of accurate exponential n

analysis is a very intensively studied problem that is com- f(t):; Ai exp(—Ait). 4

mon for many fields of science. A search in the INSPEC

database using “exponential analysis” as a keyword returnd he goal of the multiexponential analysis is to determine the

as many as about 8900 articles published between 1969 afmber of exponential componemis their amplitudesh; ,

1998. Unfortunately, in most cases researchers engaged #'d decay rates;. Finally, in the general case when the

one area of science are not aware of similar studies made fiE¢8Y IS dezcnbed by al (f:OhtIr_]UO)L\JS dlsr;mbur?on Sf emission
the other fields. This results in parallelism in research and jjates given by a spectra un_ctl(g( ) rat er than by a sum

. of discrete exponential transients, we will discuss the analy-

an enormous wasted effort. Moreover, many physicists seem By . . . .

L sis of “nonexponential transients,” or spectroscopic meth-

to be unaware of some fundamental limitations of the expo- : .

: . : .~ ods of exponential analysis:
nential analysis, which are known from the mathematical
literature.

This review article is, to the best of our knowledge, the
first article to summarize the mathematical and physical Iit-A sis of i i is aimed at d i
erature dealing with the problem of exponential analysis. nalysis o nonexpon_entla tranS|en_ts Is aimed at determin-

o ing the spectral functiog(\). Equation(5) reduces to Eq.
Surely, we could not cover all areas of application of expo-, 7. )

. . . (4) if the spectral functiom(\) can be presented as a sum of
nential analysis, and could not provide references to all arJelta functions:
ticles where application of exponential analysis enabled ex- ’
perimentalists to make substantial progress in understanding "
physical phenomena. Instead, we present the readers with a g()‘):izzl AiSN—Ni]. (6)
general picture of the current status of exponential analysis, - o .
focused on fundamental understanding of problems involved addition to the definitions of three types of exponential
in exponential analysis and on discussion of existing algo9€caysEas.(3), (4), and(5)], the experimentally measured
rithms. decaysfe,{t) contain a noise compone(t): fq,(t)=f(t)

This article consists of three parts. In the first g&cs. +e().

[I-V) we discuss the principle limitations of exponential An example of all three cases, taken from solid state

. S .. physics, is given in Fig. 1. The top of the figure represents an
analysis and show that the resolution limit of the analysis 'ée)nergy band diagram of a semiconductor with dfg.

dete_rminec[and can b_e calculate_d usin_g formglas reported inl(a)], three[Fig. 1(b)] and multiple[Fig. 1(c)] trap levels.

the literaturg by the signal-to-noise ratitSNR) in the expo-  Thege traps can capture electrons and then emit them back to
nential decays. Practical recommendations for data acquisine conduction band. The emission process is described by
tion and averaging, which enable one to improve the accugxponentials with the time constants, depending on the tem-
racy of the exponential analysis, are given. In the second pafferature and the energy position of the traps in the band gap.
(Sec. V) we present an overview of major numerical algo- The case of a single trap level corresponds to a monoexpo-
rithms for exponential analysis. Finallgec. VI), we com-  nential decay. The spectral functigf)), which determines
pare these methods on the basis of literature data. the amplitude of exponential decay with the emission rate

f(t)=f:g()\)exp(—)\t)d)\. (5)
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-é i l l FIG. 2. The famous example of Lancz@ef. 30. Twenty four data points
D (filled circley are fitted by a double exponentig(t) =2.202 exp{-4.4%)
(%0.1 1 10 0.1 1 10 0.1 1 10 +0.305 exp(-1.58) (dashed ling and by a triple exponentiaff;(t)

=0.0951 exp{-t)+0.8607 exp{-3t) and 1.5576 expf5t) (solid line). The
Exponential decay rate, A (s'1) difference betweeifi,(t) andf4(t) is less than the line width, and the lines
are undistinguishable. Following Ref. 30, the units of time are hours.

FIG. 1. A band diagram of a semiconductor with a single deep leyel
ey e g copanin s s ek s iUl functong(A) can be found only by sobing the
Isnng?rcal o? the deca;/s: monoexr?onenti%l de@y multiexponential decay ‘f_aplace integral equation, E¢). Thls equation belongs to a
(e) and nonexponential decd). more general class of Fredholm integral equations of the first
kind, which are known to be ill posé4*° (or “incorrectly”
or “improperly” posed. This term means that the solution,
g(\), of Eqg. (5) may not be unique, may not exist, and may
Qot depend continuously on the data.

The ill-posed nature of the Laplace integral equation can
be easily understoddif we take a Fourier transform of both
asides of Eq(5). The equation becomes:

Ao, is presented in Fig.(#) and is equal to zero everywhere
except forh=>Ay. The case of three trap levels results in
decays, which consist of a sum of three exponentials. In thi
case the spectral functiag(\) is represented by three delta
function-like spikes, as in Fig.(&). Finally, the case of a
distribution of noninteracting trap levels is described by

smooth continuous spe<_:tra| functigrg\) in Fig. 1(f). It is Hw)=K(0)X§(w). ®)

assumed that the functiog(\) takes nonzero values over ) A

the interval[ay,by] and is zero for the emission rates out- Here,f(w), K(w), and§(w) are the Fourier transforms

side of this interval. In the following we will call this interval of f(t), K(t,A) andg()\), respectively. It can be sho#f*

a domain of the functiom(\). that the Fourier “image” of the Laplace kerné{(t,\)
=exp(=\t) is band limited, i.e.K(w) decreases to zero as

2 2
lIl. FUNDAMENTAL LIMITATIONS OF THE V(@™ +)\") for w—co. The Laplace operator can thus be
EXPONENTIAL ANALYSIS compared with a low-pass filter in electronics. Using this

analogy, one can say that the high-frequency components of
The problem of exponential analysis is solved, in prin-the Fourier spectrung(w) of g(\), are cut off by the band-
ciple, by taking the inverse Laplace transform of the trandimited Laplace integral operator ib> wn,y, Wherewmay is

sientf(t) (Ref. 38: a certain threshold frequency. For instancé¥(o) is such
1 (ot a function that§®©(w)=0 for |w|<wmax but §(w)+#0
g(A)=ﬁJ ~ f(texpat)dt, (7)  for |w|>wm (for example, g may represent high-
c—io

frequency noisg thenK (w) X §(®(w)=0. If a solutiong of
wherec is a real constant. It is usually quite straightforward Eq. (8) exists, theng+g(® is also a solution, and thus the
to compute the integral Ed7) if the analytical expression solution of the Laplace equation is not unique. This result is
for f(t) is known. This, however, seldom happens in experi-essentially the subject of the Riemann—Lebesgue theorem,
mental physics. In most cases, E@) (also known as a Bro- well known from mathematic¥:*° Since the Laplace kernel
mwich integral cannot be applied directly to experimental K acts as a smoothing operator which filters out high-
data. Unlike sinusoids, exponentials are not orthogonal alonfrequency components of the functig{\), then any at-
the real axis, i.e., the contribution of each exponential to théempt to recover these components from a noisy transient
signal cannot be projected out by taking an inner product.,(t) will lead to arbitrary deviations of(\). Many physi-
defined as an integral along the real axis. This is reflected byists have discovered after much wasted effort that it is es-
the fact that Eq.(7) requires integration in the complex sential to understand the ill-conditioned nature of the prob-
plane. Yet, from experimental observations, only values otem before attempting to compute solutions. Examples which
the signal function along the real axis are known. Thus, theshow how significantly two solutiong; andg, may differ
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T ! T T T set of possible ones is known asgularizationof the inte-

gral equation. To regularize the equation, the inversion
method must accommodate existing prior information. For
example, a constrairgf(\)>0 is very powerful for eliminat-

ing oscillating solutions. Another very important principle is
the principle of parsimony which states that, of all possible
solutions that have not been eliminated by prior knowledge,
you must choose the simplest one, i.e., the one that reveals
the least amount of detail or information that has not been
already known or expected. While this solution may not have

o
[=2
o
(3]
T
1

0.000 \

-0.005

—a— fit using a triple exponential

—o-—-- fit using a double exponential ] . . . .
1 . .g , p. all the details of the true solution, the details which it has are

00 02 04 06 08 1.0 1.2 necessary to fit the data and therefore less likely to be an

Exponential fit residuals, a.u.

artifact*® Usually, it is assumed that the “simplest” solution

Jo(N\) is the smoothest one. The smoothness of a function
FIG. 3. Residualgdifferences between the data points and thecfitculated ~ can be measured, for example, as an integral of its second
using the data and the fitting functions from the example of Lan¢Res$. derivative(Ref. 49 or as the amplitude of its high-frequency
30, Fig. 2. . ,

Fourier components. Another approach which can be used to

find the solution to an ill-posed problem is the assumption
were provided by Lanczd®, Juliu#® and Grinvald’  thatthe solution has a predetermined form, for example, that

Lanczod® showed that a sum of two exponentials could beit i & sum ofn discrete exponential componeriesg. (4)].
reproduced to within two decimal places by a sum of threeSuch assolutlon is known asquasisolutionin the sense of
exponentials with entirely different time constants and amJvanov.

plitudes. The example of Lanczos is reproduced in Fig. 2,

where the experimental dataircles and double- and triple-

exponential fitglines) are plotted. Although the plot contains V. THE RESOLUTION LIMIT OF EXPONENTIAL

two lines, they are undistinguishable since the difference beANALYSIS

tvyeen them ?s less than the linewidth. Ir_l numerical fits, re- The problem of solving a Fredholm equation of the first
siduals(the difference between the experimental data and the; [Eq. (5)] is not unique to exponential analysis. In much

fit) are often used to evaluate the quality of the fit. Systemy experimental science, the data delivered by an experimen-

atic deviation of the residuals from zero is considered as ap, system are related to the phenomena under investigation

indication of a poor choice of the fitting function. The residu- by a linear integral transformation. The analysis of such sys-

als for the doub_le- a_md the triple-_expon_ential fits from Fig. 2tems has given rise to a well developed theory of “resolu-
are presented in Fig. 3. Analysis of Fig. 3 shows that thqion or “information.” associated with the names of
residual plots for the double and triple exponentials |°°kNyquist51'52and Shannof*5*One finds that, in the presence

very similar and are not very helpful in deciding which fit is of noise, the details of the “objectj(\) can only be recov-

better. ered from the “image”f(t) up to a certain resolution limit.

Itis “a‘“Fa' t(? ask why the residual plot .does not ShOWThis limit is characterized by the Shannon or Nyquist num-
any substantial difference between the two fits, although th er, or Rayleigh criterion, and is determined by properties of

number of exponential components and their decay rates dify, eigenvalue spectrum of the transformatipn»f. The

fer quite significantly. The answer is that it is the_cqnse'eigenvalues;/n and eigenfunctiong, are widely used in the
guence of nonorthogonality of exponentials. The variation Oftheory of integral equation&ee, e.g., Ref. 55In informa-

Fher:Ne'thed ?um of squares of thebre5|duals due tg a Cha”%n theory eigenfunctions are considered as basic elements
In the value of one parameter can be compensated o a CoBt intormation which retain their identity under the action of

siderable extent by adjusting the other parameters. The Iargﬂqe integral operator, but are scaled in magnitude by the ei-
the number of parameters to be determined, the more Serio‘é%nvalues;/ )
n:

this problem becomes. It is very important to realize that this
last property is determined by the Laplace kerldeand is
true also for noise-free decayét).

Since the functionf,,t) is measured experimentally,
i.e., it contains noise and thus is not known accurately, the
by solving the Laplace integral equation we get a fampilyf
functionsg(\), which satisfy with prescribed degree of error
the equatiorlL [ ¢ |=f,t), whereL is the Laplace operator.
The problem is then to pick the true solutigg(\) out of the * *
family . f=2 fidt), 9= 2, gV (10

Fortunately, in many cases we have some prior informa- k=1 k=1
tion about the functiomy(\). This helps us to extract from Substituting Eq(10) into the integral equation Eg5), then
the set of possible solutions a solution which has a physicalsing Eqg.(9) and the orthogonality of eigenfunctions,
meaning. The procedure of selecting a single solution from @ne can show that

Time (hours)

”

b
L K(X,Y) én(Y)dy= ynn(X). (€)

r»ivery important property of the eigenfunctions, is that
they form an orthogonal basis, and both the data function
f(t) and the solutiorg(\) can be represented as eigenfunc-
tion expansions:
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o TABLE I. The resolution limit of exponential analysis for different signal-

gN)= E k d(N), (12) to-noise ratios in the input transients and for different domain of the solution
k=1 Yk g(\) (after Bertercet al, Ref. 59.
where it is assumed that thg are arranged in descending _ _ _ Domain ofg(\), A max/Amin
d The | . h ffici Signal-to-noise ratio

order y1>y,>v3... . e largery, is, t_ e more e icient in transient (t) Infinite 5 P

the transmission of the corresponding information element

&y is through the integral. Elements corresponding to small 100 244 174 144
10° 1.88 1.45 1.27

v, are transmitted so weakly that they become lost in noise 10° 163 132 1.20
and cannot be determined accurately. Unfortunately, as will
be discussed below, the sequence of eigenvajyesf the
Laplace transform decreases to zero very quickly. Since the o )
high-frequency noise components in the détg,(t), pre- distantly on a ngarlthm|c scale. The closest dlstance be-
vent f, in Eq. (11) from decreasing as fast ag, the ratio fWeen expone_ntl_al decay rates thqt can be resplved in expo-
f /7y, diverges rapidly for largek. Thus, the calculations ngntlal aggalyss in the case of an infinite domaingék) is
will eventually become noise limited and the series, @g), ~ 9iven by:
must be terminated. The functiag(\) restored in such a =N\ 1= exXp(m wmay), (12)
way will contain the most information that can safely be . ) ] .
recovered from the experimental defig,(t). The faster the Wheréwmeyis determined by the SNR in the transients:
sequence ofy, decays to any given noise level, the sooner COSH T W) = m(SNR)2. (13)
the series, Eq(11), should be terminated, and the less infor-
mation can be extracted from the raw data. It is important tg=quations(12) and(13) determine the resolution limit of the
realize that since the sequence of eigenvalues of the Laplagkponential analysis. Attempts to increase the resolution by
transform decays to zero, one can never obtain the exaéying to determineg(\) at points closer tham\;/xi,,
solution to Eq(5).%% An infinite amount of information about = €XP(wmay) are bound to yield unreliable resufs®
the solutiong(\) is in principal not recoverable from the It is important to note that prior knowledge about the
measured transienfg,t). domain of the solution partly compensates for the informa-
The Fredholm equation with a Laplace kernel did nottion lost in noisy decays, and can be used to achieve a further
receive detailed consideration from the point of view of in-increase in resolutioff. In Ref. 59 it was shown that the
formation theory until the article by Petr@t al®” In follow-  Singular value spectrum of the Laplace integral operator de-
ing articles, McWhirteret al®® and Pikeet al,*® Bertero ~ creases slower to zero §f(\) is defined on a finite interval
et al®-% and Ostrowskyet al® calculated the eigenfunc- [@o.Do] [see Fig. 1f)] as compared to the eigenvalue spec-
tions and eigenvalues of the Laplace transform and identifie§flum of a problem wherg() is assumed to be defined on
the resolution elements of exponential analysis. Berter@n infinite domain. With application to optics, this made it
et al®® defined the number of degrees of freedom, or generpossible to obtain a resolution beyond the classical diffrac-
alized Shannon numbel as the number of singular values tion limit.%8 In the case of a limited domain of the function
that are greater than the SNR. The larger this generalize@(}), the resolution limit is determined by the numbérof
Shannon number is, the greater is the information capacity cfingular values which exceed the SNR:
the integral transform. McWhirteet al>® showed that the bo| M
sequence of eigenvalues of the Laplace transform decays so 6=r7/7j;1= =
quickly that in most cases only 4—9 eigenvalues of &j. 0
are greater than a realistic SNR. For comparison, the eigerFhe resolution limit for infinite and finite domains is given in
value spectrum of the Fourier transform never decays tdable | and presented in Fig. 4. The values in Table | and
zero® which means that the Fourier transform has a muctFig. 4 follow from Egs.(12)—(14) and were obtained by
greater information capacity than the Laplace transform. Berteroet al,>® who calculated eigenfunctions and eigenval-
An important conclusion made by Ostrowskyal® is  ues of the Laplace integral operator for different domains of
that the so-called sampling theorem known from Fourierthe functiong(\). Figure 4 shows that the resolution of ex-
analysis*®’can be applied to the problem of inversion of the ponential analysis can be substantially improved if the do-
Laplace transform. The sampling theorem states that thmain of the solution is known. If the domain gf{A) is not
wave form is completely determined by its values at timeknown a priori, one can use a “zooming” technique, i.e.,
intervals 1/2v,,y, Where wno iS the highest frequency begin with the assumption of an infinite domain, determine
present in its spectrum. Consequently, if the spectrum of thevhere the solution is localized, and then make another cal-
function f(t) is band limited by the frequenay,,.x, then all  culation for the estimated finite domain. Another method
available information in the spectrum &ft) will be suffi-  would be to estimate the localization of the solution from the
cient to restord (t) only in 1/2w,,,, data points equidistantly knowledge of its first and second moments, which can be
spaced irt. Ostrowskyet al®® have shown that the sampling derived from the data before inversith.
theorem applied to exponential analysis requires that the Summarizing this section, we came to the very important
“source” g(\) be determined at equidistant points in loga- conclusion that there is a limit to the maximum resolution
rithm of the emission rate, since the zeros of eigenfunctionsapacity of exponential analysis. This limit is inherent in the
of the Laplace transform are distributed approximately equiproblem itself and is exacerbated by noise. This limit cannot

(14)
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1.0 FIG. 5. The example of Lanczd®ef. 30 plotted for longer decay times
1 2 3 4 5 than in Fig. 2. It is obvious that the two curves, which are indeed undistin-
. . guishable at<2 h, are well separated far>3 h. However, the absolute
domain of the solution, bya,

value of the separation is less than only 0.001 of the decay amplitude.

FIG. 4. The resolution limit of exponential analysisas a function of the

domain of the solutiorb,/a, and of the signal-to-noise rati@&NR) (after if the decay is known for at least 22Hall et a compared
Berteroet al, Ref. 59. Solid lines represent dependencies of the resolution

limit on domain width for different signal-to-noise ratios. The dash-dot Iinesthe method of moments and the nonlinear least squares mini-
give the resolution necessary to recover 2,3,4,5 exponentials as a func- Mization and reported that the error in determinationrof
tion of the domainn exponential components can be resolved for a givendecreased with the increase of measurement time and
SNR and domairb,/ay, when the dash-dotted line correspondingntis reached its minimum aff/7 in the range 10—16. Zhang
below the solid line associated with SNR for the abscissa valu®) t, . et al’® reported that for a monoexponential transient with
The horizontal dashed lines represent resolution limit for different SNR for : .

the infinite domain. unknown baseline both the PronySec. VIB3 and

Levenberg—Marquard{Sec. VIB 2 algorithms requireT
be surmounted by numerical algorithms. Any attempt to ob-=> 57 for best performance.

|74

tain resolution beyond the resolution limit will result in un- ~ To provide an example of the importance of monitoring
reliable and unstable solutions. the decays for the time periods which substantially exceed
the decay time constants, we calculated the double- and
V. DATA ACQUISITION FOR HIGH-RESOLUTION triple-exponential decays from the example of LancZos
EXPONENTIAL ANALYSIS (Sec. lll) for the decay time 6 h instead of 1.2 h as in Figs.

1 and 2. This corresponds to the increase offtheratio for
the slowest component of the decay from 1.2 to 6. It is in-
The major goal of exponential analysis is to distinguishstructive to see in Fig. 5 how two decays, undistinguishable
exponential components with close time constants in the exfor t<2 h, become well separated after 3 h. However, the
perimentally measured decay. To achieve high resolution iulifference between the two curves does not exceed 0.001 of
exponential analysis, it is very important to record the tranthe decay amplitude, and hence can be detected only if the
sient until it decays completel="? Since the ratio of SNR in the experimental data exceeds 1000.
amplitudes of two exponentials with close decay rates: As discussed above, SNR in the input decays is a major
exp(—Aqt) and expEat) increases with the time as factor that limits the resolution of exponential analysis. Un-
exd (Ao,—A9)t], then these exponentials always can, at leastortunately, SNR of the decays obtained from the experiment
theoretically, be distinguished if the decay is monitored for ais usually determined by sensitivity of the equipment and
sufficiently long time. Since the exponential is a decayingoften does not exceed 100. For example, interfering radio
function of time, the transient should be monitored as long a$requencies, instabilities of pulse generators and dc voltage
the signal amplitude exceeds the noise level. For a signal-tasources, noise of current and voltage amplifiers, drift of tem-
noise ratio, SNR- 100, the measurement tinffeshould be at  perature, or in optical spectroscopy fluctuations of lamp in-
least 4.6 [since exp(4.6)-100], for SNR=1000 about 6.8  tensities, photomultiplier color effects, or light scattering,
and for SNR=10" at least 9.2 A too short duratioll may  will all degrade the SNR. The above mentioned value of
become an important limiting factor for the resolution capac-SNR=100 is still too low for most of algorithms discussed
ity. This is frequently ignored in experiments and numericalin Sec. VI, and is clearly insufficient to distinguish the
simulations. A number of examples confirming that the resocurves in Fig. 5. Averaging a large number of transients en-
lution of exponential analysis can be improved by increasingbles one to improve the SNR by a factor of ab&uf?,
T/ 7 can be found in the literature. For instance, Sreitlal”®>  whereK is the number of averaged transiefifsis estimate
analyzed the Gardner transform techniqdescribed in Sec. assumes Poisson statisjicSince it is usually too time con-
VI C 4) and came to the conclusion that the best resolution irsuming to average more than abouf t@nsients, it is easy
the recovered emission rate spectrum could be obtained ontp calculate that after averaging one can obtain a SNR up to

A. Digitalization and averaging of transients
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FIG. 6. Simulated transient obtained by averaging exponential decays witkIG. 7. A simulated exponential decay after digitalization using 8, 12, and
decay rate gradually changing from one to f¢snlid ling). The dotted lines 16 bit of the ADC. Steps on the curves are associated with digitalization
represent the fastest and the slowest components of the decay. noise.

10* for SNR without averaging of 100. According to Table |, exponential analysis that the amplitude of the input signal
this SNR would enable one to obtain the resolution as higltovers the full dynamic range of the ADC. This can be usu-
as 71 /7,~1.63. Such a resolution was indeed obtained inally achieved by adjusting the sensitivity of the AQ@ost
practice(see Ref. 72, for an exampleHowever, one should modern data acquisition boards have input amplifiers with
keep in mind that it is necessary to avoid any fluctuationsadjustable gain; if an on-board amplifier is not available, an
and drifts of the components of experimental setup duringxternal voltage amplifier can be ugetf the amplitude of
accumulation of transients. The averaged transients can ke transient is, e.g., only a hundred times larger than the
substantially distorted by instabilities of gain or a dc offset oflowest bit of the ADC, then the signal-to-noise ratio in the
amplifiers, by drifts of voltage and current sources or pulsaligitized transient will never exceed a level of about 100.
generators, instabilities of temperature or lamp intensity, esOnly 16-bit or, in the worst case, 12-bit ADCs are suitable
pecially for long measurements. Although the amplitude offor high-resolution exponential analysis. Figure 7 is an ex-
high-frequency noise components will decrease with increasample of digitalization noise. In this figure, we simulated
ing accumulation, the accuracy of the measured decay magigitalization of an exponential transient with the amplitude
actually start to decrease after a certain critical accumulationf 20 meV using a 16-bit ADC with the sensitivity selected
time is exceeded. For example, according to Dobacze{fski, in such a way that the input voltage range is from 0 to 20
the maximum averaging time of capacitance transients imeV, 320 meV, and 5.12 V. The input signal is then spanned
high-resolution DLTS, which is tolerable to the drifts in the over the range corresponding to 16, 12, and 8 bits of the
equipment, is about 10 min. This value may indeed dependDC. Steps on the curves in Fig. 7 correspond to the digita-
upon the experimental equipment and the skill of the experilization noise, which is fairly low if all 16 bits of the ADC
menter and may vary for different areas of science. It shouldre used, but becomes almost as high as 1% of the decay
be emphasized that the drifts which may change the decagmplitude if the dc input voltage range is set much higher
time constant are particularly detrimental for exponentialthan the signal amplitude.
analysis since the average of several exponentials with dif- Another question that arises in experiments is how many
ferent time constants is not a monoexponential decay. Texperimental points in a transient should be measured for a
illustrate this point, in Fig. 6 we present results of a simula-high-resolution analysis. As was discussed in Sec. IV, the
tion of averaging of a sequence of exponential decays witl.aplace transform is band limited and it is only possible to
the decay rate changing gradually from unity to four. Dottedderive a finite amount of information on the functigi\)
lines correspond to the fastest and the slowest decays of tieom the data. The minimum number of data points neces-
set. The solid line is the averaged curve. Obviously, the acsary to determing(\) for a given SNR is determined by the
cumulated decay is no longer monoexponential and does notumber of degrees of freedom of the solution, which in the
properly represent the physical phenomenon which causesse of inverse Laplace transform seldom exceed¢s&8
the decay. Sec. V). This means that in most cases only 10—20 points
An important part of an automated data acquisition syswould be sufficient. However, these points should be opti-
tem is an analog-to-digital convertéADC). Important pa- mally (equidistantly in logarithmical scalsampled® Bert-
rameters of the ADC are its linearity and time stability. Fur-ero et al®® showed that in the case of a limited domain
thermore, an ADC may introduce additional discretization[ag,bg] of g(\), by/ay=<8, the ill conditioning of the res-
noisé’ with an amplitude that can be roughly estimated astoration of 2—4 exponential components with 5 optimally
the sensitivity of the lowest bit of the ADG.e., as a change placed data points is less than with 32 linearly spaced data
in the input voltage which changes readings of the ADCsamples.
from N to N+1). It is very important for high-resolution Experience with well-posed problems tells us that the
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more data points are measured on the curve, the more accu- Smith et al® proposed to determine the baseline using

rately it can be fitted. In exponential analysis one should takéhree data points. If:

into account that an excess of data points makes the inver-

sion problem less stable. The proceéi)ure of digitalization of Y1i=Ao X ~to/7) +B,

the exponential decay is a kind of low-pass filter. In agree-  Y,=Ajexd —(to+t,)/7]+B, (17)

ment with the Shannon sampling theorghmnly the oscil-

latory components with a frequency lower than half of the Y3~ Ao€XH —(to+2ty)/7]+B

digitalization frequency are transferred. If we increase thehen

sampling rate, we increase the content of noise-related high- >

frequency Fourier components in the spectrum of the mea- B=(Y1Y3=Y2)/(Y1+Y3=2Y2). (18

sured transient. Since useful information can be extractedternatively, the decay can be differentiated to remove the

only from the several lowest-frequency Fourier componentpaseline’#® This can be done by taking the differences be-

of the exponential decay that are greater than the noise, th@een the values of the signal at successive points and car-

additional noise-related high frequency components makeying out an exponential analysis of these differences instead

the problem more ill pose¥.’® Most regularization tech- of the original decaj’ Mangelsdor®® and Pef® suggested

niques discussed in the second part of this review articlgubstituting differentiation by plotting(t+ At) againstf (t)

enable the user to find a stable solution even for a very larg@ith constantAt throughout. The main disadvantage of these

number of data points. However, one should realize that ultwo methods is that they emphasize high-frequency noise.

timately the increasing number of data points results in armBetter results may be obtained by employing advanced dif-

increase of computational time without any improvement inferentiation algorithms. For example, one can consider the

resolution. differentiation as an ill-posed probléA?? and apply
There is, however, another aspect of the same problenTikhonov regularizatior(see Sec. VIC¥% or make a spline

As a rule, ADCs sample the transient at equidistant points ofnterpolation of the data and then differentiate the re%t.

time. Since the sampling interval should be at least several Finally, Isenberget al®* and Kirchneret al®? proposed

times shorter than the time constant of the fastest componensing exponential depression to suppress the baseline. In this

of the exponential decay, then for a spectroscopic analysigethod, the input transient is multiplied by a decaying expo-

covering several orders of magnitude 4none has to mea- nential expf-\qt). The extracted amplitudes are unchanged,

sure from several thousands to several hundreds of thousandfd the emission rates; are related to the extractex

of points. In this case, one has to deal with very large datahrough a simple relation;=\;—\4. However, this treat-

files. To reduce the number of data points in the analysisnent was regarded by Gardnet al® as “a drastic and

several authors suggested pseudologarithmic st6tage  unrecommended step.”

data acquisitioff algorithms.

C. Smoothing of transients

B. Extraction of the baseline offset The amplitude of high-frequency noise in the transient,
which makes the problem of exponential analysis less stable,
can be decreased by smoothing the transients. It is important
that the smoothing algorithm should not introduce distortions

date the baseli ffset ¢ q into the component time constants. There are essentially two
accommodate the baseliné ofset as a parameter and réquiffyi, o 4s which were developed for the smoothing of expo-

that it be extracted before the analysis. The existing metho ;
f baseline offset subtracti based fion thag 1o, decays.
of baseline offset subtraction are based on an assumption that 1, othod developed by Dyson and IsenSérglso

even in the case of a multiexponential transient the tail of theknown as mean displaced raiDR) method, is based on
decay can be approximated by a single exponential of thﬁwe assumption that the observed decay is :';1 sum of an un-

form: known number of discrete exponentials. The original func-

fo(t)=Aexp —Aot) +B. (15) tion f(t) is replaced by a new functioi(q) that has the
same time constants as the original curve, but a much im-
proved SNR. For continuous daté(q) is defined as

Determination and extraction of the baseline off&in
Eq. (2), is an important problem of exponential analy¥is.
As it will be discussed in Sec. VI, most algorithms cannot

|82 |83

Kirchneret al°* and Ikossi-Anastasioet al.°° suggested us-

ing the Fourier transform to determine the paramefer8

and\,. The formulas used in their method are described in 1 T-Q

Gt See. VIAL Y@= 1g | ot 19
Mooreet al® and Smithet al® suggested two algebraic

methods. In the method of Mooret al® the value of the Where 0<q<Q andQ<T, whereT is the upper limit oft

baseline offseB is treated as a parameter to be adjusted t&nd Q is a positive constant that determines the degree of

minimize the variance of the distribution of determined as smoothing. Note that while the original observations are col-
lected betweert=0 andt=T, the smoothed data cover a

vie={In[f(t) — Bl = In[f (te n2) = BIH (te—tie i) - somewhat smaller range, froq=0 to q=Q.
(16) When the experimental situation yieldé+1 discrete
The value ofk varies in Eq.(16) from 1 toN/2, whereN is  observations, made at equal increments of tiiteso that
the number of experimental points. t;=iAt, the mean displaced ratio is defined as
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N-L VI. NUMERICAL PROCEDURES FOR EVALUATION

1 f.
= > K, (20 OF TRANSIENTS
N-L+1/ f

Yy

wherek=0,1,..,L. The degree of smoothing is controlled The first part of this review article discussed the ques-

by the choice ofL, with increased smoothing achieved by tion, “vyhy it is hard to a“?'yze the t_ranS|ents,”_ “how the
decreasing the value. Ikossi-Anastasioet al® and Dyson resolution of the exponential analysis can be improved by

et al% found that for the data with 5%—10% noisk using the correct procedure of data acquisition.” Yet, so far
-0 g\l is a good choice " we have not discussed actual algorithms for extracting decay

If the original observations can be represented as rates and amplitudes from_the transi_ents. In t_his section, we
present a summary of major numerical algorithms used for

n exponential analysis in applied physics. This section is in-
f(t)=2>, Ajexp(—t/r), (2)  tended for physicists who wish to gain a deeper understand-

=1 ing of the techniques of exponential analysis. First-time read-
then, as it is easy to obtain from Eq®0) and (21), the ers who are interested in general features of exponential
output curve has the form analysis rather than in details of the algorithms are advised to
skip this section and continue reading from Sec. VII. The

. goal of this section is to classify the methods of exponential
Y(q)=j§=:l Bj exp(—al ), (22 analysis, discuss their essential features, and give some
guidelines to choose the most suitable for a given task algo-

where rithm. This review article is not intended to be a complete

A N guide for programming of the discussed methods, and does

_ i _ not necessarily describe all mathematical aspects of the al-

A= N—-L+1 121 Xt/ m)/, @39 gorithms. This particularly applies to the most sophisticated
methods, discussed in Sec. VIC. The reader interested in the

and details of correspondent algorithms should refer to the origi-

n nal articles cited in the text. Furthermore, we want to empha-

Yo=2, Bi=1. (24)  size(and will return to this point later in the discussjahat
i=1 the program code for a number of most of the complicated

Dyson et al% noted that the advantages of the MDR arealgonthms discussed in Sec. VIC is readily available from

twofold: not only does it reduce random deviations from theProgram libraries, and we strongly encourage readers to use

true decay without the risk of introducing systematic errorsthe existing code rather than to write their own.
y gy '’ The structure of this section is as follows. Following the

but it also ellmlqates one unknown by exactly defining theclassification introduced in Sec. Il, we divided the methods
sum of the amplitudeg; [Eq. (24)]. It was also notetf that . T i
for exponential analysis into three large groups: monoexpo-

it is important to extract the baseline off§&ec. V B prior . ;
o mplemertig the MDR smootig.
Provenchet ®® suggested another smoothing algorithm: > " '
v ugg Ing aigort which assume that decays consist of a sum of seVioah 2
L L to 4) exponentials; and spectroscopic methods of exponential
Y(t)= 2 f(tm)f(tm+tk—tl)/ 2 fz(tm), (25 analysis, which do not make any assumptions about the de-
m=1 m=1 cay rate spectrum and can be applied to both discrete expo-

wherek=1,2,..,j, j=N—L+1, andN is the number of Nnentials and continuous distributions of emission rates.
data points. The output signal is given by E2p), where the The algorithms for the solution of the Laplace integral
coefficientsB; are expressed as equation are derived assuming that both the exponential de-

cay f(t) and the spectral functiog(\) are analytical func-
L - 5 tions. Some authors prefer to emphasize the discrete nature
,Bj:Aij:l f(tm)exq_)\jtm)/ m§=:1 f(tm). (26) of the problem and formulate the Laplace equation in the
matrix formf=Kg. In this equatiorf andg are data vectors
However, since this algorithm uses a product rather than andK is the matrix, which represents the Laplace integral
ratio of the data points, it does not uniquely define the sum obperator. The algorithms are essentially the same for both
the amplitudes, and therefore does not reduce the number ofatrix and analytical representations. Overviews and com-
unknown parameters as the mean displaced ratio does.  parative analysis of major matrix-based methods can be
Windowing filtering techniques, which are based on afound in Hanset®~1%or Varah% The matrix methods are
convolution of the transient with a function with a band- often faster, at least if the matrices are not too large. More-
limited Fourier imag®1® can affect the exponential nature over, the matrixk ~* has to be regularized and calculated
of the data, unless the signal is filtered after it is reversed imnly once and can thereafter be repeatedly used for evalua-
time 1% The problem of detection and removal of impulse tion of different transients with the same SNR. The analyti-
distortions of the experimental data was intensively dis-cal methods do not have this advantage, but they work
cussed in the literature on digital image processseg, e.g., equally well with both small and very large amounts of data
Refs. 102-106 and, from our point of view, are easier to explain. Therefore,
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our discussion will be confined to the analytical versions of 1 1 (f(tz)—f(tl)) (
1 31)

N f(ts)—F(tp)

the algorithms. —=55n
: . . ) At
To avoid possible confusion, we want to emphasize that 18

the methods are grouped according to the capabilities of th\é’herlelgt:tz__tlzts—lztg- Mukoyamd'® and later Zubkov
methods rather than according to the type of the transien€t @~ and Kimet al"“" proposed a four-point formula:
The methods of monoexponential analysis discussed in Sec. C(t.)—C(t

: ; . (t2)—C(ty)
VIA can be applied to only monoexponential transients. 7=(t3—ty)XIn W ,
However,monoexponential transientan be evaluated using 4 8
any one of the discussed methods, including those from Sec#heret,—t;=t,—t3. Note that Eq(32) reduces to Eq(31),
VIB and VIC. If the task of the reader is to analyze a mo-if t,=t3. A disadvantage of these algebraic methods as com-
noexponential transient, we would also strongly recommengbared to the Fourier transform meth¢@ec. VIA 1) is that it
reading Sec. VIB on methods for multiexponential analysisuses only 2 to 4 data points to compute the time constants,

and thus is more sensitive to deviations of data points due to

(32

A. Methods for monoexponential analysis noise. Another drawback of the methods from this subsection
_ _ is that they cannot be used to determine the amplitude of the
1. Fourier transform of the transients decay and are not tolerant of nonzero baseline offsets.

The Fourier transform maps the exponential relaxation
into a function of frequency according to the equationB. Methods for multiexponential analysis
F(w)=J[Aexp(-Adt)+B], whereJ is the Fourier transform 1. Graphical analysis technique (peeling method)
operator. A very useful'property of the Fourier transform of The graphical analysis techniqualso known as the
an exponential decay is that for any nonzero angular fre-

guencyw, the ratio of the real and the imaginary componentspeellng methotiwas widely used in the 1960s, when desktop

. ) . computers were not available. If the componextsof the
of F(w) yields the quantity—\,/w independently of the . :
baseline offseB or amplitudeA (Ref. 82 multiexponential decay are not too close to each other, then

the transienf (t) for large values ot can be approximated
No=—ow RF(w)]/ImF(w)]. (27 by the slowest component, i.e.,

Although the decay constakt, can be determined from Eq. n
(27) for any frequency, usually only the lowest frequencies In[f(t)]=In 21 A exp(—At)
are used!®-13After ), is calculated, the amplitude of the '~

decayA and the baselin® can be easily calculated: ~In[Aexp(\pt) ]=In(A,) — A, t. (33
(w?+ }\S) R F(w)]At Obviously, A, and A\, can be determined, plotting the
A= No 1—exp(— Notm) ' (28) transientf(t) in a semilog scale and fitting its tail with a
straight line. Then, the slowest componégiexp(—Aqt) is
B=F(0)/N—(Ag/Notm)[1—exp(—Notm)], (29 subtracted from the transiefitt) and the procedure is re-

where » is any nonzero Fourier component given by peated to determine thg parameters of tlhztze second slowest
2mnlt,,, and At=t,,/N. Here,t,, is the time of the last CcOmponent, etc. According to Van '—'EW up to three
observation, andN is the number of data points in Fourier exponentlals.can be extracted.by this method. The peeling
transform. An important feature of this method is that it is Method requires that the baseline offset be extracted before
noniterative, and hence is very fast. The method gives goofd- (33) is applied to the transient. _ _
results even if the noise level is as high as 169 The With the development of computers, graphical analysis
important advantage of this method is that it can be realize('S“‘EthOds‘zgtr?meo”ma‘_j into nonlinear least squares fitting
on a computefusing the fast Fourier transform algorithor routines™ discussed in Sec. VIB2.
using electronic spectrum analyzers. Another advantage of ] ]
the method is that it determines the baseline offaétich as 2~ Nonlinear least squares analysis
we will show below only few methods can dand thus does The nonlinear least squaréblLS) analysis consists in
not require that the baseline be subtracted before the methadinimization of the functional
is applied to a transient. N
2 — _ 2

X(P) =2 [feqlt) —folt; P12,
2. Algebraic methods =1
(34)

Devries and Khaht*!*®proposed the “divisor method”

n
based on the formula of Mooret al® Assuming that the  fo(t,p)= 2, Ajexp(—\it)+B
baseline offset is extracte@Bec. VB, it is easy to obtain =t
from the expressiofi(t;)=A exp(—t /7) for i=1,2 the value by variation ofJ=2n+1 parameterp;, the parameters be-
of the decay time constant ing amplitudesA;, decay rates,;, and eventually an offset
B, wheren is the assumed number of exponential compo-
7= (L= t)/INT(t)/1(t)]. (30 nents, andN is the number of experimental points. Minimi-
The necessity of subtracting of the offset can be easily overzation of the value ofy? is achieved by variation of the
come by measuring three valuesf¢f) instead of twa'*®117  parameterp; . Sometimes, the right-hand side of Eg4) is
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multiplied by weight factors. These weight factors enable  The optimum values for the parameter incremefys
one to emphasize or deemphasize certain data points. Howare those for which the functiog? is a minimum in the
ever, we will not discuss these weight factors since, to thgparameter space, i.e., for which the derivativesy6fwith
best of our knowledge, they are seldom used in exponentiakspect to the parameters are zero. This condition together
analysis. with Egs. (36) and (37) results in a set ofl simultaneous
The search for the solution is an iterative procedurelinear equations irsp;, which can be presented as a matrix
Each iteration consists of two parts. First, a decision is madequation(see, e.g., Ref. 124
in which direction to proceed in the parameter space, and
then it is calculated how far to go in that direction. Modifi- J
cations of the nonlinear least squares method differ mainly in ~ B,= E opjaj, k=1,...N, (38
procedures used to determine the direction and the length of =1
the steps, and can be classified according to the maximufihe curvature matrixx and the gradieng are given for the
order of derivative used in calculations. Newton—Raphson method by
The simplest fitting routines do not use derivatives at all.

For example, the grid search minimizg$ with respect to 1 9x2(p) 1 #x2(p)
0 0

each parameter separately, varying one parameter at a time. g, =— - ———, k=5 T (39

Each step in this minimization procedure is a single param- 2 Ipx 2 9pjIpx

eter search, and a quadratic approximation is used to find thg,q for the Gauss—Newton method by

minimum (see Bevingtott¥). The efficiency of a grid search

can be improved, using conjugate directions metHgug?’ ’ N

Another  nonderivative  method is the simplex Br=— 1 IXo(P) =2 [fexdti) —folti,p)] To(ti,P)

methogft00-128-130 2 gpe = R v px
Slope-following methodsgalso known as gradient search

method$ evaluate the first derivatives of the error function N g dfo(t;,p) dfo(t; ,p)

(9X2/(9pj in order to determine how the parameters should be aik=i21 5 D o (40

= i

changed to minimize thg?. All parametersp; are incre-

mented simultaneously, moving the parameter vector a short  The Gauss—Newton and Newton—Raphson methods dif-
distancedp in the direction opposite to that of the gradient fe;r majnly in the formulas for calculation of the curvature

vector Vp: matrix «. The Gauss—Newton method is used more often
19)(2(!3) because it estimates the second derivatives from the first de-
Vp:jzl ( 7 pj), (35  rivatives instead of calculating them directly. This greatly
= j

simplifies calculations. Several modifications of the Gauss—
where p; are the parameters arfij indicate unit vectors. Newton method were reported that avoid calculations of the

Equation(35) provides only the direction and not the length derivative at each step by approximating them from the re-
of the parameter incremerdp. The latter is obtained by a siduals. These methods are known as quasi-Newton
one-dimensional search. This procedure is repeated ytil methods**"***As a rule, the Gauss—Newton or Newton—
converges to a minimum. The other modification of the gra-Raphson methods and their modifications require more com-
dient search method is the method of conjugatePutations for one step, but converge in a fewer number of
gradients-31~133This method determines the search directionsteps than gradient or grid search methods and, as a conse-
on each step as a linear combination of gradients on th@uence, have better overall performance. This was shown in
current and preceding steps. numerous test§!?-147

Methods that use the second-order derivatives calculate The direction and length of each iteration are determined
both the direction and the size of a step. Methods that use tH®y the inverse matrixa™*. It must be a positive definite
second-order derivatives calculate both the direction and th@atrix for the iterative process to proceed toward the mini-
size of a step. To approximate the dependeyf¢p) in Eq.  mum. Therefore, Gauss—Newton and Newton—Raphson

(34) in the Gauss—Newton method the fitting function is ex-methods can only be used in a close vicinity of a minimum.
panded to the first order in a Taylor series: Crockettet al1*® and Greenstatft® have shown that the ratio

of the largest to the smallest eigenvaluedt® provides a
afo(t,p) s ) measure of the convergence to a soluti®ee also the re-
p; Pi): view of Spang™®9
If the starting point of the search is far from the mini-

mum and the approximatiofEgs. (36) and (37)] fails, the
search procedure tends to overshoot the minimum and di-
verge. In this case, one can use partial stefap, with k
3XS(D) <1, instead of the full ste@Ap qucified by_ the Gausls—

ap: op; |, (37 Newton or Newton—Raphson algorithms. This mef8d

J is known as “damped least squares.” The optimum value of
wherex3(p) andx3(p+ p) are the values of? before and the “damping coefficient’k can be obtained by using a
after the step. one-dimensional search procedtité.

J

f(t.p+op)=fo(t.p) + 2, (36

wherefy(t,p) is the model function Eq34) before the step,
andf(t,p+ dp) is the function after the step. The Newton—
Raphson method uses the Taylors expansiogp?of

J
xA(p+ 6p>~xé<p)+§l
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Another modification of the Gauss—Newton method wasmethod is not robust with respect to nonrandom errors in the
proposed by Levenbet$ and, independently, by transient.
Marquard™* It consists of replacing the curvature mateix
by a+ yl, wherel is an identity matrix. This method may be . ,
viewed as a compromise between the Gauss—Newton an% Algebraic methoads (Prony's method)
steepest descent methods. Whes 0, it gives a Gauss— Prony’s method requires that the deddy) be measured
Newton step. Asy—, the step direction coincides with the at 2n equidistant points (to), f(ty), .. .,f(tan_1). Prony®
direction of the gradient, and the value pfserves as the showed that approximation of the decay by a sunm ax-
“damping” coefficient. The usual practice is to adjust the ponentials,
value of y dynamically from one iteration to the next by a n n
rule Which is based on the past pehavior of the algorithm. An f(t)zz A, expl _)\it)zz Aint,  wi=exp—\))
analytical approach to the choice of was proposed by =1 i=1

Goldfeld et al 5 (4D
An important advantage of the Levenberg—Marquardresults in a system of 12 equations with 2 unknowns:
method is that even if the matrix is singular, the matrix A, A,, ... Ay, M1, M2, « .. ofhnt

a+ vyl is nonsingular whenevey>0 and can be made well
conditioned by choosing to be sufficiently large. This is a
very useful property for the fitting of exponentials because if

A1+A2+' "+An:f(to)
Arpr+Aopot- -+ Agun=1f(ty)

the time constants of two decays become close, the matrix Arpd+Agus+e+ Agub=1F(tp)
becomes nearly singular.

A comprehensive treatment of the Gauss—Newton, A T Ayt ALY = ()
Newton—Raphson and Levenberg—Marquard algorithms and (42

listings of computelrooprograms can be fou5nd in Bevindtén Solving this equation, one finds the decay ratesnd am-
and n Presset al.™" Worsley and LaX*® and Flanagan pjitudesA; . The difficulty with the solution of equation Eq.
et al.>" applied the Gauss—Newton method to a linear comy4)) is that they are nonlinear in thes. This difficulty can
bination of exponentials and analyzed its accuracy. The deye minimized by a method proposed by Prétip 1795.(A
termination of the standard deviation of parameters in thejescription of this method can be found in Refs. 176-1179.

nonlinear least squares method was discussed by Bifrell e suggested to concentrate the nonlinearity of the system in
and Swarte®’ Further modifications to improve convergence 3 single algebraic equation. Lgt ,y, . . . , ., be the roots

of the Gauss-like methods were proposed by Deuflhargs the equation
etal,’®® Neri etal,’® Lybanon®®'®! Dennis et al,'*®
Hart|ey,162 and Leeet a|_163 (M_ #l)(ﬂ_ MZ)' : '(M_ Mn) =0, (43)
The iterative least squares analysis is a simple, easy-tQhat can be rewritten as
implement and efficient technique, and is widely used for n n—1 e _
exponential analysis. In the case of a monoexponential tran- A~ @14~ @’ “=r = an = e =0. (44)
sient, the least squares algorithm can even be reduced to &m order to define the coefficients, we multiply the first
algebraic equation that can be solved diretifyHowever, equation in Eq.(42) by «,, the second equation by
two essential difficulties are inherent in the least squares fity,,_,, ..., thenth equation bya; and the 6+ 1)th equa-
the initial guesses for the values of the unknown decay pation by — 1. If we then add up the first equations and use
rameters are needed and, if these initial estimates are podgq. (44), we obtain
:Eg L’;irsza(::zper?na%if;);\flgsr_g}l%to a local minimum rather than to F(t) = ayf(ty 1)~ . . — ayf(tg) =0. (45)
The nonlinear least squar@dLS) method was success- Starting successively with the second, third. , nth equa-
fully used for analysis of decays that consisted of one tdions, we find that Eq942) and(44) imply the followingn
three exponential decays. Grinvafd,Morimoto et al,'%81%°® linear equations:
and Tahiraet al*"* found that for a SNR better than 1@ F(t e+ F(to_ ) ant .+ F(tg)an=F(t)
double-exponential decay could be resolved if the ratio of £t Et N Rt —ft
time constants was,; / 7,>2. However, in the case of three (th)ay+f(th-y)azt ... +T(t)an="f(tnsa)
exponents the method was found to be very sensitive to eve S
a small amount of noisE* Bromagé’ concluded that for a  \ f(tan-2)as+f(tan_g)azt ... +f(th- 1) an="F(tzn-1)
decay-time-constant ratio of 2:1, the retrieved values of pa- (46)
rameters are about 200 times more uncertain on going frorVe may therefore first solve the linear equatipgs. (46)]
two to three exponentials. Claydenall”® concluded thatin  for ay,a,, ... ,a,, then find the rootgu; , x5, . .. ,un Of
the case of a double-exponential decay, NLS fit is robust iEqg. (44), and finally solve any of the linear equationgEq.
m/7>2.4 and SNR is about 20 If a decay consists of (42)]for A;,A,,... A,.
three exponential and SNRLC?, the components can be re- This method is also known as the “operator method
solved if 7, /7p= 15,/ 73>3.5. If the SNR is about 100, three (Ref. 180 or the method of “linear predictive modeling”
components can be resolved if the decay-time-constant ratidRef. 70. This term reflects that a linear combination of
is above 10. It was also notEd1"°that the least squares valuesf(t) in the “past” is related to the value in the “fu-

2
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ture” by the linear operator equatidiq. (46)]. In the cova-
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pected. The result is a set nfexponentials that are candi-

riance method of linear predictive modeling, applied to thedates for the signal components. The next step is then to

problem of transient analysis by Shapiebal,’® Enderlein
et al1®! and Apanasovictet al,'®? equations equivalent to
Egs. (44) and (46) were obtained from quite different con-
siderations, namely from application of teeransfornt®®to
Eq. (41).

The method of Prony in its original form is extremely
sensitive to noise and round-off errisand is not accept-
able for analysis of redhoisy) transients. Hildebrart& pro-
posed using more thann2-1 experimental noisy points
f(t,) for the determination of 2 parameters and search for
aq,ay, ... ,a, as a linear least-square solution of E46),
i.e., as a minimum of the functional

M n 2

= 2 | f00= 2 anfkm) |,

(47)

where M is the number of measured data point>2n

—1. Another version of the Prony method which utilizes
more that 2—1 data points was developed by Sun

et al,®%18 who presented Eq(46) in the matrix formY
=AX, where

f(t,) f(th-1) f(to)
O I (CHEVE R (L Mt
L f(ton-1) f(ton_2) f(th-1)
s (48)
A=| 2
L &p

Instead of the straightforward solution of this matrix equa-

tion in the formA=[X"X]~XTY, they introduced an aux-
iliary matrix Z determined as

f(th-141) f(ty)
f(t,, F(te,
_ (th+k) (tes1) | 49
f(tan—2+k) f(th—1+k)

wherek is an integek=1, and the total number of points in
the decay isV =2n—1+k. Sunet al®°proposed to com-

pute the solution ad=[Z"X] [Z"Y]. Such a solution es-
tablishes a correlation between the values of functiomthe

determine a smaller subset of size@ut of n exponentials for
which a linear combination of exponentials best approxi-
mates the observed data using the least squares criterion.
They suggested starting with a subset of the &izel and

then increase it by one until no substantial improvement in
the error is observed. Ho#t al*®” suggested singular value
decomposition of the matriX [Eq. (48)] to determine the
number of exponential components. They suggested increas-
ing the size ofX (i.e., the number of unknown components
a) as long as all singular values %f remain large. By suc-
cessively increasing the size ¥f a system must be eventu-
ally reached which is unacceptably ill conditioned. Then,
some of the singular values &f will become very small.
The transition from a well-conditioned system to such an
ill-conditioned system is expected to occur when the size of
the matrixX exceeds the number of exponential components.

4. Differentiation of transients and method of
modulating functions

As with Prony’s method, the differentiation method is
based on a certain equation which an exponential decay of
the form Eq.(4) should comply with. It can be easily shown
that a transient given by E@4) obeys the following differ-
ential equation:

df(t) d?f(t) d"f(t)
f()+a; ar T2 ge OanZO, (50)
where
al=zi )\i_l, az:;j ()\i)\j)_l, ey
(51

an=(NAy ")\n)il-

In the case of a noise-free decdyt), the parameters
ag,aq, - .. ,a, can be determined by calculating deriva-
tives of f(t) and solving Eq(50) fort=t;,t,, ... t,. Fora
monoexponential decay, the solution of E(0) and(51) is
simply

_di)

ar (52

future and in the past and thus decreases the sensitivity of th® disadvantage of the differentiation method is that it does
solution to noise. In this form, Prony’s method was appliednot allow one to determine the amplitudes of decay. How-
to compute solutions for doutfe and triple-exponential ever, the major problem with this algorithm is that experi-
decay$®® and showed a comparable accuracy with that of thenental transients are noisy, and large errors would result
NLS method (Sec. VIB2. However, Prony’s method is from their numerical differentiation.
much more computationally effective. On the other hand, the Differentiation of noisy transients can be avoided by us-
baseline offset should be removed from the transient beforing the method of modulating functions proposed by Loeb
Prony’s method is applied, which is not necessary for NLSand Cahert®®18 Modulating functionse(t) are functions

A very important problem for Prony’s method is to de- that satisfy the condition that the function and all its deriva-
termine the number of exponential components in the trantives are equal to zero fae=0 andt=T, assuming that the
sientn, i.e., the rank of the matriA. Kumaresaret al!®®  function f(t) is determined on the interval=[0,T]. Ex-
suggested using Prony’s method first witHarger than the amples of such functions arg"*}(T—t)"*1, sin(w/T)(t
number of exponential componerits which is actually ex- —T)], etc. It can be easily shown that
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Td"f(t)
dt" @(t)dt b]_:—Z )\i, bzzz 7\i)\j, C ey
0 i 1<]
_ _ 5
i TaH() dott) b= (= 1) Ay Ay &7

T
=gt O~ . Tdr T dt
For example, for a monoexponential transient, it is easy to

T d"e show that Eqs(55) and (57) reduce to
=...=(—1)“f f(t) ——dt. (53)
0 dt F0(t)
. . . ) A= . (58
Following the idea of Valeur and Moiré? and muilti- f(t)

plying both parts of Eq(50) by a modulating functiorp(t)

and integrating from O tal by parts, as in Eq(53), we Since integration in Eq(56) is done on an interval

[t,¢], the functionsf(P)(t) remain functions oft, and the

obtain unknown coefficientd, can then be obtained from E(h5)
T T (1) by solving a system of equations for aiy data pointst
aofo fodt— a’lfo f—gydt+ -+ (= 1) e, =t;, or performing a least squares fit using all experimental
data points. Having determined tigg,, the decay ratei;
T d" can be determined by solving the system of equations, Eq.
X o fwdtZO. (54 (57).

Tittelbach-Helmrich®® showed that when integration is
Hence, the derivatives df(t) in Eq. (50) are substituted performed over a limited time interval, the integration algo-
by the derivatives ofp(t), which can be calculated analyti- rithm also enables one to determine the baseline. However,
cally. It should be noted that one needs a system efjua- the solution is more stable and ex&dtif the baseline is
tions to determinen unknown parameterg,,. In Eq. (50) subtracted from the raw signal before the analysis. For the
such a system could be obtained by substituting the functiointegration method, it was demonstrat&don computed
f(t) by its values at different times=t;,t,, ... t,. This two-component decays with, / 7,= 2.5 that reliable separa-
cannot be done with Eq54) since it includes integration tion of the components is impossible if the SNR is less than
overt. However, one can use different modulating func- 30. Forr;/7,=5, two components can be separated up to a
tions, for example of the formp(t)=t"*}(T—t)"*1*P, SNR of about 10. When two-component analysis is per-
whereP=1,2,...n. formed with a baseline determination, the mean error of the
To the best of our knowledge, the sensitivity of the calculated time constants increased by a factor of about 3—10
method of modulating functions to noise has never been anazompared to the case without baseline restoration.
lyzed using simulated decays. However, it was reported that
the method was applied to pulse fluorométhand capaci-
tang:e spectroscop¥ and could su.ccess.fully res_,olve Fwo X~ 6 Method of moments
perimentally measured exponentials with a ratio of time con-
stants of 2. The method of modulation function does not The theory of moments itself dates back to the nine-
enable one to determine the amplitude of the transients and teenth century, although it was applied to the exponential
not tolerant to nonzero baseline offsets. analysis much later by Bay* This method is based on the
evaluation of the time-weighted momentg of the transient
f(t) defined by

5. Integration method %

. . . = J téf(t)dt, (59)
The integration method was proposed by Tittelbach- 0

Helmrich1®® The idea of this method is somewhat similar to _

the differentiation method, discussed in the previous sectiof?here k=0. For a monoexponentidl(t) =exp(-t/7), the

However, instead of differentiation, the exponential decayMOMentsy are smooth functions of decay time constant

f(t) [given by Eq. (4] is integrated over timep with a maximum att=7/k (Ref. 96. Defining the param-

=1,2,...n times. It can be then shown that the following etersGs as
equation holds: n
= 7S
H0)+ by f ) + b () ++- + by f V() =0, (55 Go=2, A, (60

vyheref(p)(t) are the functions obtained bypafold integra-  \wheres=1, it can be showf that theG, are related to the
tion of f(t). moments of the decaf(t) by the equations:

Gs=ps—1/(s—1)! (61)

n
f<P>(t)=f f f(0)do= >, ArPexp—t/7)
(P) ! k=t 56 Equation Eq.(61) can be used to determir®,. Then, the
(56) individual time constants can be determined by solving a
and the coefficienty; are given by system of equations®>
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1 T . ™ é
f(t)y=2, Ajexp(—\;t 63
G, G, .. Gu. (=3, Ajexp-\D) (63)
=0, (62
gives the expression

Gn Gny1 ... Gpp ]
where the roots of the determinant are the individual time | [f](p)= fw exp(—pt)f(t)dt= >, A _ (64)
constantsry ,7,,...,7, Of the exponential components. After 0 =1 Pt

the time constants are determined, the amplitudesare Detecting the exponential components is then a matter of
found by using Eq(60). The method of moments can be . 9 P b

. . O identifying the poles of Eq(64). This involves three steps.
applied to analysis of decays that originate from a nonabru ! .

Y . o . he first step is to express the Laplace transform(of at a
excitation function, which is the case in, e.g., fluorescence

decay studiegsee Refs. 83, 94, 96, and 195—200 for moreSpeC'f'C pointpg asa polynomial function through the use of
a Taylor expansion truncated to the power

detail.
An important part of the analysis of decays using K _
method of moments is the determination of the number of F(p)=L[f](p)=>, ci(p—po), (65)
j=0

exponential components. A common method, discussed by

Isenberget al®*% and Kirchneret al,® is to fit the data 1/ diL[f]

successively to an increasing number of exponential compo- CJ:,_(_]_) (Po), (66)
nents. As the number of components is incremented, each jt\ dp

succeeding fit incorporates the components of the precedingy,
fit. The appropriate number of components is finally deter-
mined by evaluating the rms error and by examining the  d/L[f] o _

relevance of the results. It is expected that fomacompo- ij—(p)= J; (—t'f(Dexp(pt)dt. (67)
nent transient, analysis for+ 1 components will result in an

additional, superfluous component with either an exceed- The second step is to describe the polynorfil. (64)]
ingly small or negative amplitude, or a negative time con-in terms of its Pad@pproximant. The necessary algorithms
stant. Finally, before one can apply the method of momentsfor this step can be found in Perfdh or Longmarf*? A
the baseline offset must be extracted from the measured dateade approximant, denoted byL/M](p), is the rational
Without this step, an excessively large contribution is intro-function obtained by the division of two polynomials (p)
duced into the moments integrals from the tail of the tran-andB,(p) of degreeL andM, respectively:
sient.

The method of moments works very well with monoex- | /y115)— AL(P) _aptapt.. .a p
ponential decays and returns reliable results even in the case Bu(p) botbip+..bypV -
of SNR as low as 10Ref. 82. The method of moments also . ) . . i
proved to be capable of extracting two components, even in  D€composition of the Pade approximant into its partial
relatively severe noise (SNRLO).®? Isenberd’* showed fractions in the third stage gives the exponential time con-

that the method of moments can successfully resolve thregiants and amplitudes according to E8f). It is assumed at
exponential components with, /7,/75=3:7:11, andeven this stage that the series represented by(&4).is equivalent

concluded that the method of moments was more stable witfp the polynomial fraction, E68). Note that because of the
respect to noise than NLS. form of the rational expression, E(64), we are only inter-

ested in thg n— 1/n] approximants, wherg is the expected
number of exponential components in the multiexponential
decay(usually 2 or 3.

The only input parameter of the method is fhyevalue.
The method of rational approximation for an approxi- Although theoretically the solution should not dependogn
mate Laplace transform inversion was suggested by E¥ke, round-off errors may result in an unstable solution if the

Fair®? and developed by Longm&ti—2% and Akin and choice ofp, is poor(see Ref. 210 for detailsA potentially
Counts?°"2% The idea of the rational function approxima- serious source of errors of the Laplace—Pamhod is trun-
tion method is to approximatit) by a convergent series of cation of the measured decays.Examples of applications
rational functions{f(t)}. This series is then inverted ana- of the Laplace—Padtechnique can be found in Refs. 213,
lytically to give a sequence of functiongg,(\)} 214, 215. The Laplace—Padpproximation is not applicable
={L[f ()]} which, if properly chosen, will converge rap- to decays containing baseline offset. For the Laplace-Pade
idly to g(\) ask—o. However, this method is used less method it was reported that even with a SNR of about 15,
often than the elegant rational functions approximation sugeomponent detectio(for four-component decay with the ra-
gested by Yeramiaet al?°® and Aubardet al?*® They pro-  tio of the neighboringr between 3 and 10could be per-
posed using the rational functions to approximate theormed satisfactoril?®® Clayderf* showed that without
Laplace image of the transiefnft) rather than the transient noise one can resolve two exponentials with the ratio of time
itself. The Laplace transform, when applied to the functionconstants =, /7,>1.5 and three exponentials ifri/7,

of the form =71,/73>2.

ere

(68)

7. Rational functions (Laplace-Pade ) approximation
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C. Spectroscopic methods for analysis of tion W(t) defined on the time interv@D,t.], and the product
nonexponential decays is averaged over a period of correlatipn In general form,
1. Sampling methods the output signal of a correlator is given by

The sampling methods originate from “delta conver- _y [tatte
gence sequences(Ref. 216. They represent the spectral ~ SLI(V) te tal=t¢ ft fOW(t—tq)dt, (74)
functiong(\) as a linear combination of values of the data ¢
functionf(t) in a sequence of points ,t,,... t, (Refs. 217— whereW is the weighting function an8 is the output signal
220). of the correlator, which is a function of the decay-rate distri-
As was shown by Daviest al??* and Nolteet al,?*’the  butiong(\), the duration of the weighting functio, and
most accurate sampling formula was derived by Steifést, of the delay timety between the beginning of the decay and
who based it on a statistical expectation function defined bypeginning of the correlation. The delay time is usually intro-
Gaver??* Given a Laplace image, in our case an experimenduced to improve selectivity or to avoid distortions of the
tal decay curvd (t), the algorithm calculates an approxima- signal due to overload of the measurement system just after

tion to the inverseg(\) as follows: the excitation which triggers the decay.
N The output signal of a correlator is in fact a Laplace
_In(2) min2 image of the weighting functioW/(t) [which is easy to show
9N =— mfl —— (69) , i ARG
m=1 assumingf (t) =exp(—At)]. Therefore, it is fairly simple and

using any table of Laplace transformations, to find such a
weighting function that the functio8( ) will give a maxi-
Kp=(—1)mt (N2 mum for a certainrs= 74, and will drop to zero ifrc—0 or
T7s—. The selectivity of a correlator and its sensitivity to
% 2 noise in the input transients are strongly affected by the
k=(mt1yz (N2—K)IK! (k= 1)1 (m—K)! (2k—m)! shape of the weighting functiohV(t). Since correlation
(70 analysis of transients is a major technique for determination

Theoreticallyg(\) becomes more accurate with increasing©f decay time constants in DLTS,much effort has been
N. However, rounding errors worsen the resultsNifbe- ~ mMade to find a correlation function that would combine high

optimum N is approximately equ&i???to the number of results of these studies have been recently reviewed by Istra-

where

min(m,N/2) (2k)! k1+(N/2)

digits the computer is working with. tov et al. (see Ref. 232 and references theyelh has been
Another well-known formula is that of Post and Showrf**?34that a properly chosen correlation function can
Widder225.226 provide a resolution only slightly worse than much more
‘ 1 complicated regularization techniques. It was also shown
) (—1)*[k + k ; . . .
g(\)=lim - o[ Z 71) that the sampling methods of numerical inversion of the
kel K! A N Laplace transform, discussed in Sec. VIC 1, are identical to

the correlation methotf®

The spectral functiorg(\) can be restored using the
so-called “frequency-scanned” method. This method, as far
as the authors know, was proposed independently by Henry
et al,?*® Ferencziet al®® and Turchanikowt al?*’ In this
method, the duration of the weighting functiopnis varied

where f0 denotes thekth derivative. It is clear that rela-
tively small errors in the evaluation of the derivatives could
seriously impair the accuracy of E¢r1) since differentia-
tion, in general, expands inaccuracies. Therefore (Eb).is
frequently used with only the first-order derivati¢/¢:

g(\)=—N"2fD(\"Y (72)  for each transient until a maximum in the depende@ce,)
. I is reached. An example of its application can be found in
or even with the zero-order derivative: Ref. 238
g ="M, (73 Correlation analysis can distinguish exponential compo-

The last two formulas were successfully used in capacitancgems with a ratio of time constants/ ;=34 if the SNR

spectroscopy  of semiconductors by  Okushi andm the input transient is greater than 980.1t can also be
Tokumar?2’-22 Tomokageet al2® and Ishikawaet al23: applied to decays with SNR as low as 5, but in this case the

The sampling methods discussed in this secfisith the resolution will not exceed; /7 =15,
exception of the method given by Eq21) and(72)] require

that the baseline offset be extracted before the method can be

applied. The Gaver—Stehfest algorithm was tested by Nolt&. Approximation by orthogonal functions
et al??2 with double precision arithmetic ard=24. It was

. : . The method of approximation by a series of orthogonal
shown that without noise one can typically resolve two ex- . o ; : .
. ; . . functions is widely used in mathematics.d{\) is repre-
ponentials with a ratio of time constants of 1.5.

sented by a series of orthogonal functiopg\), then the
Laplace integral equation, E¢), will have the form

Ek: AkPx

2. Correlation method

The correlation method is a signal processing method f(t)=L[g(\)]=L

=2, al . 75
where the input signal is multiplied with a weighting func- Ek: (ew) (79
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The coefficientsa, can be found using a simple numerical the computation of Fourier integrals were available. The
procedure, provided an analytical expression ligk,) is  technique was later modernized by Schlesifjarsing the
known. It has been proposed that we approxing(te) by  fast fourier transform{FFT) algorithn?®? to approximate the
an infinite sum of orthogonal polynomials such asFourier integral. An expression quite similar to E@7) can
Legendre?l239-241| aguerre®®239.242-246Chepyshetf24’-2°0  also be obtained using Mellin transforfeee Refs. 64, 263
or  Jacobi®=2**  polynomials, by trigonometric instead of the Fourier transform; however, the computational
functiong3%2412%5 or by Fourier seried’ Davies et al,??!  methods for the FFT are much more effective than the algo-
who tested 14 numerical methods of solving the Laplaceithms used to calculate the Mellin transform.
integral equation, concluded that the use of Laguerre and The computation of Fourier transforms by numerical in-
Chebyshev polynomials gives very good accuracy over degration on an infinite interval is clearly impossible. There-
wide range of functions. Furthermore, an approximation byfore, the integration interval must be truncated on both sides,
orthogonal polynomials already includes regularization,i.e., the cutoff pointst x, of the integral in the direct Fourier
since the requirement that the solution can be approximatetlansformJ and the cutoff pointst x of the inverse Fourier
by a polynomial of a given degree provides a filtering of transform3J~ must be introduced. The cut-off procedure in
solutions. J usually results in spurious high-frequency components in
However, the most natural choices of an orthogonal sethe spectrum of the direct Fourier transform and in error
of functions for the inversion of the Laplace transform areripples in the plot ofg(e™Y) vsy, which tend to obscure the
singular functiongor eigenfunctionsand singular valuer  results. The best solution to decrease the amplitude of ripples
eigenvaluegof the Laplace integral operator. Eigenfunctionswould be to follow the transient for a sufficiently long
and eigenvaluetsee Smithie®) are determined for the case time® An appropriate choice of the cut-off frequenay of
that the domains of (t) andg(\) coincide, and were dis- the inverse Fourier transform may also decrease the ampli-
cussed in Sec. IV above. If the domainsféf) andg(\) are  tudes of ripples. However, if.y is chosen to be too small,
different, a generalization of the eigenfunction expansion ighere is an unnecessary loss of resolution of the peaks in the
provided by the singular function expansiofi.The main  result of calculations. Thugy, serves as regularization pa-
formulas and the concept of the number of degrees of freerameter.
dom and of the resolution ratio introduced in Sec. IV remain  Provenche¥ described in detail a computer program for
valid also for the singular value expansion. Various numerithe realization of the Gardner transform. A number of prac-
cal techniques for evaluation of the singular values and sintical details on how the best possible accuracy and resolution
gular functions are known, see, e.g., Refs. 58, 97. The eigerf Gardner’s transform can be achieved, and examples of its
function expansion was practically employed by practical applications, can be found in Refs. 98, 258, 264—
Provenche?! who used it to obtain an initial approximation 273. Although the method is not sensitive to baseline offset
for the least squares analysis in his progm@sCcRETE How- if the integration in Eq(77) is done on an infinite interval, in
ever, as far as the authors know, the progmiscrReTEis  real-life applications where the integrals must be truncated
probably the only example of application of singular value(as discussed aboyethe stability and accuracy of the
decomposition in practical exponential analysis. Since thenethod will be higher if the baseline is removed. The reso-
methods of Gardner transformation and Tikhonov regularizatution capacity of the Gardner transform was tested by many
tion (discussed in the next sectignare much more com- researchers. The number of points in the FFT varied from 32
monly used, we will not go into further details of the methodto 256. All author®95:257:258.261,264,265,266.271.2713. 24 me 1o
of approximation by orthogonal functions. the conclusion that the resolution limit for noise-free decays
was betweenr;/m,~1.7 and r;/7,=2.5. The signal-to-
] ] noise ratio SNR-200 decreases the resolution limit to
4. Fourier transform (Gardner transformation) 7,/7,~4 (Ref. 264, SNR=100 decreases the resolution to
Gardneret al®*?*" proposed the following solution of 71/7,=5 (Ref. 273. For noisy transients (SNR20) (Ref.
Eq. (5). The substitutiol\ =exp(-y) andt=exp) trans- 273 even the number of components could not be reliably
forms the Laplace integral, Eq5), into a convolution detected.
integral?®®

ff(x)=gg(x)@kk(x)= j gg(y)kk(x—y)dy,  (76) 5. Tikhonov regularization method

The regularization method for solving the Fredholm in-
where gg(x)=glexp(—x)], ff(x)=exp&)f[exp&k)], and  tegral equations of the first kind was proposed independently
kk(x) =expik)exdexp)]. These types of integrals may be py phillips*® and in a more general form by Tikhond{ see
deconvolved using the Fourier transform technigtie®® also monographs by Tikhon®and Morozov2™2"” In this

g(e™Y)=3"YI[e*f(e)]/I[ e exp(— )]}, (777 method, instead of an exact solution, one searches for an
approximate solution, which gives a minimum to the follow-

where7J is the Fourier transform operator. A graphgfe™Y) ing functional:

as a function of\=e™¥ will thus show maxima whenever

A=M\;, with the amplitude proportional t4; /\;. _ Jb _ "
The method of Gardn&t did not attract much attention Ma[g(M)] a K(t,M)g(M)dh—f(1)] +aQ[g(N)],
when proposed in 1959 because no effective algorithms for (78
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where() is a regularizingor smoothing functional, andK is ~ and program NLREG®®®). Riele suggested the program
the exponential kernel. The practical implementation ofFiREGU3® One should note that despite the apparent sim-
Tikhonov's regularization requires one to choose a smoothplicity of the Tikhonov regularization, it requires rather com-
ing functional () suitable for a given problem and, for a plicated computational algorithms to accommodate numeri-
given , the regularization parameter Then, the solution cal integration, differentiation, selection of the regularization
g(\) is found using one of the minimization techniques. Theparameter and minimization technique. The prograros-
following expressions for the regularizing functional are fre-TIN andFTIKREG, mentioned above, contain about 5000 lines
quently used”’® of the FORTRAN code. It is a very time-consuming task to
b write such a program, and we strongly recommend using one
dg(n) . o
Q[g()\)]:J (k(}\) + p()\)gz()\))d)\ (790  of the available programs rather than to write it oneself. To
a dx the best of our knowledge, the code of the above mentioned
programs is available from the CPC program libré3/The

and
program CONTIN can also be downloaded from the
(g(n))2 Internet®*
QlaM)]= J 2 Ki ()‘) o) |9 (80) Tsemd™ tested the Tikhonov regularization algorithm

- _ for a double exponential and showed that two exponentials
wherek(\) and p(\) are smooth positive functions. Fre- with 7,/7,>2 can be reliably resolved if SNRI1C®.
quently, only the second derivative g{\) is used in Eq. Tarasov® showed that two exponentials with /7;=3 can

(80): be distinguished with SNR100, while exponentials with
b/ d?g()))2 75/71="5 can be distinguished for SNRL5.
Qlgn)]= f el (81
a 6. Method of maximum entropy
The regularization parameter determines the balance The method of maximum entropy stems from probability

between the exact and a smoothed solution of (Bg.The  theory and information theory, which introduce a criterion
solution which gives a minimum to E@78) for =0 may for the amount of uncertainty represented by a discrete prob-
have no physical sense and may be unstable with respect &bility distribution (p;---p,). Clearly, a measure of random-
small changes iffi(t). On the other hand, if the parameter ness, or prior uncertaintid of the data, should have a zero
is large, the solution will be both smooth and stable, but avzalue when the number of probabilities is unity, i.e., when
significant part of the physical information containedf (i) there is no spread at all, and should be positive when there is
will be lost?’® Several methods were proposed to choose thenore than one probability. Furthermore, it should be additive
optimum «. Most of them depend oa prior knowledge of for independent trials, i.e.H(pqg)=H(p)+H(q). Obvi-
the noise level in the daf:2"8-?t should be noted that in ously, the logarithm log(), among many other functions,
practical cases, when the noise level is known only approxisatisfies these requirements: Since it is just the expres-
mately, the selection of by means of an automated com- sion for entropy as found in statistical mechanics, it was
puter algorithm remains a challenging task. An interestingcalled the entropy of the probability distribution, or simply
method, which gives a clear understanding of how the reguthe entropy. Henceforth one can consider the terms “en-
larization works, choosesa using the so-calledL tropy” and “uncertainty” as synonymous.
curvel06:108.284-286n g rvey of methods for selection of the The entropy, as a measure of uncertainty of the outcome
parameterr was made by Davie€’ The problems of exis- of an experiment, is largest when all admissible outcomes
tence of a solution when Tikhonov regularization is used, ithave equal probabilities. The principle of maximum entropy
uniqueness, convergence rate, etc., were widely discussedim very simple: when making inferences on the basis of a
the mathematical literature, and the reader may refer to Refpartial information we must use that probability distribution
90, 277, 288—-294. which has maximum entropy subject to whatever is known.
Equation(78) may be solved by any optimization tech- This is the only unbiased assignment we can make. This
nique, for example by the NLS technique. However, it wasmaximum entropy description retains all of the uncertainty
shown to be computationally effectf®°to searchy(\) as  not removed by the data, and thus it tends to be most objec-
the solution of the Euler equation for the functiondl,, tive or maximally noncommittal with respect to missing
determined in Eq(79): information®'* More details on the basr?éprégciples of gr;zaxi—
_ mum entropy can be found in Jayn&s;3?! Skilling,
VMalg(M)]=0. B2 Gray?® and Aczelet al® A very useful introduction into
Several computer programs that utilize Tikhonov regu-information theory and the concept of entropy is presented
larization algorithms are known. ProvencHatistributed his by Woodward®?®
programcoNTIN?®® to more than a hundred research labora-  In experimental science one deals with the values of cer-
tories. His program was employed for high-resolution ca-tain physical parameters rather than with their probabilities,
pacitance spectroscopy of semiconductors by Morimot@and the method of maximum entropyIEM) is used prima-
et al,2%¢%%" Fudamoto et al.?®® Tahira et al,?®® Yoshino rily as a regularization technique with a regularizing func-
et al,>%° Maier et al.>*? Batovskiet al,>*>3%3and by Dobac- tional identical or similar to the entropy teriff It is sup-
zewski et al./23%43% The Tikhonov regularization method posed that the unknown functiar(\) has the properties of

was also implemented by Weegprogram rTIKREG?®3%”  the probability distributiori.e., g(A\)>0 and, when normal-
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ized, fg(A)dA=1], and the datd, = f(t,) are considered as T T T
constraints. The objective is to choose from all feasible so- 10000
lutions g(\) the one that maximizes the entropy functional,
—fg(\)log(\)d\. This problem can be solved algebraically
using the method of Lagrange multiplie¥8:>?”or as a com-

bination of the principle of maximum entropy and the algo-

I
A

S
44
[=]
£ 1000 - -
rithm of Tikhonov regularizatiori28-331 o
o
MLG(V)1=[Kg— 1] +agM)log ﬂ)‘ (®3) g
m\) /| T
. - £ 100 F s
where« can be considered as a Lagrange multiplier or asa g
regularization parameter, and(\) is a prior estimate of &
g(\). Landl et al®*2 discussed regularization functionals of =
the form:
10 l | ]
1 10 100
09~ [ p@InDg)ax, (84
T/t

whereD denotes an ordinary differential operator with con-

.. FIG. 8. Magnification of errors due to random noise in the input transients
stant coefficients of the form: 9 P

for three different algorithmgafter Bromage, Ref. 132 nonlinear least

P dP squares analysidilled circles (Sec. VI B 2, algebraic method as was sug-
Dg= 2 a 9 (85) gested by PronyRef. 29 (triangles and in modification of Cornel(Ref.
9 ) Pd\P’ 340 (open circleg (Sec. VI A 2. The data are plotted as a function of the

ratio of data acquisition tim& to the mean decay time constantCalcu-
MEM-based filtering is used in physics primarily for im- lations were done for a double-exponential decay.

age processing’ such as forensic imaging, radio astronomy,

medical tomography, and plasma tomography. The image ]

restoration techniques benefit from the property of the MEMTN€se assumptions vary from method to method, and se-
functionals Ing) and —gIn(g) to give reconstructions that lected by exponential analysis the “be;t” solutpn depe_nds
are positive, have sharpened peaks and flattened bas&linesOn @ number of factors such as: the noise level in transients
An application of the MEM principle to the solution of the (@nd the distribution of errors in the simulated ngjsie
Laplace integral equation was discussed by GRwhichis  Presence of the offséand the accuracy of its determination

so far the only application of MEM to exponential analysis @1d subtraction the number of exponential components as
known to the authors. well as the ratio of their time constants and amplitudes, and

the ratio of the time constant of the slowest component to the
measurement time.
For example, Bromadé& analyzed three methods: two
The idea of comparing numerical methods for exponenmodifications of Prony’s algebraic methéithe method as it
tial analysis and choosing the one with the best resolutionvas proposed by Profyand in modification of Corneif?
has always been very attractive. A standard procedure tand the NLS method. He simulated double-exponential de-
compare different algorithms is to apply them to one or sev<ays with equal amplitudes and the ratio of time constants of
eral simulated sets of input datan our case, exponential the components,/7,=2. The decays with added random
decay$ to compare the accuracy of the solution, the sensinoise were analyzed using each of the three algorithms, and
tivity to noise in the input data, and the time required tothe scatter of retrieved parameters was compared with the
compute the solutions. Many scientists, e.g., McKinnonknown input noise level. The dependencies, represented in
etal,®®*  Smith etal,”> OConnor etal,®® Fig. 8, were found to be parabola-like curves with a sharp
Tittelbach-Helmrich'®®  Kirchner et al,®? Isenberg’®  minimum, which had an individual position for each method.
Bromage'’? Thomassoret al,’* Zhanget al,”® Apanasovich  The error in the determination of could be an order of
et al,'® and Doolittle et al3*%3% tested different fitting magnitude higher than at the point of minimum;Tifr was
methods applying them to simulated or experimentally obchanged by a factor of 2 from the optimum val(sze Fig.
tained relaxations. Their results revealed that the compariso8).
procedure which works fine for well-posed problems, returns  The strong dependence of the errors in Prony’s method
by far less conclusive results when one has to deal with then parameters of the transients was later confirmed by de-
ill-posed problem of exponential analysis. Well-posed prob-ailed studies of Suet a8 Consequently, a comparison
lems always have a solution, and the solution is unique. Ibf the methods for exponential analysis will be comprehen-
the problem of exponential analysis was well posed, then theive only if: (a) all methods are tested using the same input
analysis of any transient would return the set of parametersjata, andb) the test includes transients with varied number
which was used to simulate the input déaasuming that the of decay components, ratios of amplitude and decay rates of
algorithm is correot This is not the case with ill-posed prob- the components, noise level, baseline offset, ratio of decay
lems. The solution is not unique, and the algorithm has to usacquisition time to the decay time constdntr, and if ap-
certain assumptions to select one of the possible solutionglicable, initial approximation for the fit. Such a comparison

VIl. COMPARISON OF EXPONENTIAL ANALYSES
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would require a very large number of fits and is beyond thecussed methodgor some of the methods no test results are
scope of this review article. Clearly, the literature analysesvailablg. Hence, the resolution of the method is not a cri-
also do not comply with the requirements listed above. Firstterion to prefer one of the methods to another. Indeed, it is
usually only two or three methods were tested by each awery important to choose the method suitable for a given
thor. Furthermore, different authors used entirely differentexperimental problem, such as for monoexponential or mul-
sets of transients to test the methods, which often led tdiexponential analysis, or a spectroscopic method. This clas-
contradictory result§as it can be expected from the discus- sification of methods was discussed in detail throughout the
sion of Fig. §. Just to mention a few examples of such review. However, even if the required type of the algorithm
contradictions, Isenbet§ demonstrated that if a decay con- is clear, there are a number of algorithms to choose from in
sists of several components with similar time constants, eveaach of these three groups. To make a final choice, the fol-
very small errors will cause the NLS fit to fail, whereas lowing factors must be taken into accoud} the stability of
Grinvald etal* came to the opposite conclusion. each method with respect to a wide range variation of pa-
Tittelbach-Helmrich®® concluded, that the method of mo- rameter valuegin other words, how much the sensitivity of
ments gave large systematic errors even if the SNR of théhe method to noise and its resolution varies as the param-
decay was about 200 and excluded it from the analysis, whileters of exponential decay varyb) the time it takes to
Kirchner et al® reported that the method of moments compute a solution{c) the difficulty of programming the
worked fine even for SNR 10. algorithm and whether the program code is available from
Despite disagreement in the literature about comparativerogram libraries{d) the tolerance of the method to a base-
performance of different methods, a very important concludine offset.
sion about the resolution limit of all methods discussed  The stability of the algorithms as the parameters are var-
above can be made. As discussed in Sec. IV, there is a fued is an increasingly important problem. As discussed
damental resolution limit to exponential analysis, determinedbove, a comprehensive comparison of exponential analyses
by the SNR in the input transients. According to Table I, therequires a large number of fits and was beyond the scope of
maximum resolution which can be achieved for the infinitethis review article. The literature data are also insufficiently
domain of the solution is 2.44 for SNRL0O, 1.88 for conclusive. In this review article we wish to emphasize this
SNR=1000, and 1.63 for SNR10*. The SNR in experi- problem and hope that this discussion will stimulate detailed
mental transients depends on the type of experiment and astudies in the future.
the number of averaged transients, and seldom exceeds The time required to compute a solution is gradually
SNR=10°-10". Therefore, the maximum resolution that can losing its importance as computers are getting faster. Yet the
be reached in experimental setups,/7;, is about 1.6— calculation time may in some cases remain an important fac-
1.8. The analysis of literature data reveals that this resolutiotor to consider, since it may vary by several orders of mag-
has been reached using nearly all fitting and spectroscopititude. Generally, the computation time is largest when the
methods discussed in this review article. For NLS analysivariational methods are involved. It is worth noting that all
(Sec. VIB 2, the resolution ofr,/7,>2 was reported for methods(and particularly the methods discussed in Sec.
SNR=1000 by Grinvald®’ Morimoto et al,'®®'%°and Ta- VIB) can be divided into two groups: methods based on
hira et al1’® The resolution ofr;/7,=1.5 for a double ex- variation methods, like nonlinear least squares; and methods
ponential andr, / ,=2 for a triple exponential for simulated which are based on systems of algebraic equations. The first
decays without noise was reported by Clay&¥rJsing the  group of methods anticipates that the transient can be de-
integration methodSec. VIB 5, Tittelbach-Helmrich®3re-  scribed by Eq(4) and varies parameters until a good agree-
solved components in a double-exponential decay withment between the experimental transient and . is
71/7,=2.5 even for the SNR as low as 30. The method ofachieved. The other group of methad&sony’s method, dif-
modulating functiongSec. VIB 4 could resolve two expo- ferentiation method, integration method, method of mo-
nentials with a ratio of time constants up to(Refs. 191, ments, Laplace—Padapproximation is based on a certain
192). The same resolution was reported for the Prony’sequation which includes the decdyt) (and eventually its
method® (Sec. VIB3 and for the method of momenfd  derivatives, moments, ejcand time constants and ampli-
(Sec. VIBH. The Gaver—Stehfest sampling meth@@ec. tudes of the decay. This equation is then transformed into a
VIC 1) was tested by Noltet al,??> who showed that with- system of equation by substitutinf(t) with experimental
out noise it can resolve two exponentials with/ 7,=1.5.  data pointsf.,t), i=1,2,... N, and the unknown param-
The Gardner transforrtBec. VI C 4 was tested by a number eters are determined by solving this system of equations.
of researcher§>9%:257:258.261,264-266.271.2132ffh 5 agreed that These methods are usually much faster, although some of
the resolution limit of the Gardner transform for noise-freethem are also more sensitive to noise.
transients is between, /7,~1.7 andr; / 7,=2.5. Tsem&'? Programming of methods of monoexponential and mul-
and Tarasot# tested the Tikhonov regularization method tiexponential analysis is quite straightforward. The algo-
(Sec. VICH and reported a resolution of,/7,=2 for rithms for least squares minimization, FFT, and the solution
SNR=1000 andr,/7;=3 for SNR=100. The resolution of of matrix equations, which are parts of some exponential
correlation analysis(Sec. VIC23 was reported to be analyses, are well documented and the code of these subrou-
717, .1=3.4 for the SNR of about 90(Ref. 239. tines can be found in textbooksee, e.g., Ref. 100Some of
Thus, the problem of reaching the fundamental resoluthe spectroscopic methods, such as the sampling method or
tion limit is, in principle, solved for nearly all of the dis- correlation method, are also very easy to program. On the
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other hand, the mathematics involved in most powerful specmethods has been derived analyticabge, e.g., Refs. 341,
troscopic methods such as Tikhonov regularization and42). We believe that the understanding of this fundamental
Gardner transform is quite complicated. Fortunately, the proprinciple and of the principle limitations of exponential
gram codes of these programs are readily available from thanalysis is of major importance for every scientist involved
CPC program librar§° Some of the programs can be down- in evaluations of exponential decays.
loaded from the Internét! The main parameter of exponential analysis is its reso-
Tolerance of the method to baseline offsets may be veryution, i.e., the ratio of the time constants of two exponentials
important, depending on whether a baseline offset can behich can be resolved in the transient. It is very important to
encountered in the experiment. Few of the discussed teclbear in mind(see Sec. IYthat there is a principle limitation
nigues are tolerable of nonzero baseline offsets. The correlaf resolution of exponential analysis. This limitation is inher-
tion method(Sec. VIC32 is probably the only algorithm ent in the nature of the problem itself and cannot be im-
which is absolutely baseline insensitive. The monoexponenproved by developing new algorithms. The resolution limit is
tial Fourier transform of the transientSec. VIA 1), Gardner  determined by the SNR in transier(tee Table | and Fig. 4
transformation(Sec. VI C 4, the NLS methodSec. VIB 2, in Sec. V). According to the literature, most of the methods
integration methodSec. VIBYH, Tikhonov regularization discussed in this review article have reached the resolution
(Sec. VICH and the method of maximum entrofgec. close to the resolution limit of exponential analysis for a
VI C 6) can accommodate the baseline offset as an additiongliven SNR. There are indications that the major trend in
parameter, but this usually results in a higher sensitivity tadevelopment of programs for exponential analysis is now
noise in the input transients than in the case without offsetshifting from achievement of the highest resolution possible
Some of the sampling methoéSec. VIC 1 are also tolerant to development of programs that are independent of initial
to baseline offsets. However, such commonly used methodspproximations, stable with respect to variations of time con-
as Prony’s methodSec. VIB3, or method of moments stants and amplitudes of exponential components, and insen-
(Sec. VIB 5 will provide wrong results or will even crash if sitive to baseline offsets. Frequently, a combination of sev-
a decay contains an offset. Unfortunately, algorithms for exeral techniques is required to satisfy these requirements. The
trapolation of baseline offsets are poorly developed and ar8tting routines impose stronger regularization on the prob-
not always sufficiently exact. Therefore, we would recom-lem and work well even for high signal-to-noise ratios. How-
mend algorithms that do not require baseline corrections anever, they are accurate only if the hypothesis of the number
can accommodate transients with a baseline. of components is correct and the initial approximation is
If we put together all pieces of information on each par-close to the true solution. A way to obtain this initial ap-
ticular method as they are available from the literature, takproximation is to extract it from a spectroscopic method, as it
ing into account the features which we expect each methodias done by Provenchérand Mazzolaet al**? Daniel$?®
to have, including stability for wide range changes in parampointed out that many programs based on the NLS method
eters and insensitivity to baseline offsets, then the best mettirequently contain more than one technique. These programs
ods (according to the opinion of these authorgould be: first use a “slow but sure” algorithm such as the simplex to
Fourier transform of the decaySec. VIA 1D for the meth- find a good initial approximation, then a faster technique
ods for monoexponential analysis; the NLS meth&®c. when sufficiently close to the minimum.
VI B 2) for the fitting methods, and correlation meth(@ec. Although the problem of acquisition of transients is of-
VIC2) and Tikhonov regularizatiorfSec. VIC5H for the  ten neglected in favor of computer algorithms for their analy-
spectroscopic methods. It should be noted that the correlatiasis, the SNR of the transients and, consequently, the resolu-
method is extremely simple to program and is very versatiletion of the exponential analysis are to a great extent
although the Tikhonov regularization enables one to get theletermined by the experimental setup. As it was discussed in
most of resolution for a given SNR in the transient. Sec. V, an incorrect choice of the settings of the analog-to-
digital converter, too short duration of the digitized transient,
or instabilities of the experimental equipment during the data
accumulation can impose severe limitations on the resolution

We have reviewed an extensive number of articles fronfapacity of exponential analysis.
various branches of experimental physics and mathematics, Finally, it is worth noting that complicated numerical
discussed general limitations of exponential analysis and, fitéchniques are not always the only way to resolve several
nally, summarized the algorithms for exponential analysisSXPonents with close time constants. In fact, closely adjacent
suggested in the literature. At first glance, it appears thagxponential components can frequently be resolved by
there is a great variety of numerical algorithms for exponen€hanging the experimental conditions of the measurement,
tial analysis. However, a deeper insight in their principlesfor example the temperature, or intensity of excitation, etc. A
and classification of the algorithms, suggested in this revieviumber of examples of this approach can be found in the
article, shows that all methods use the same fundamentferature*3
regularization principle, based either on a model of the func-
tion g(A) (a§ in fitti'ng methods, Segs. VIA and VD.B)I’ on  ACKNOWLEDGMENTS
an assumption of its smoothne@s in spectroscopic meth-
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