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INTRODUCTION 

  
The magnetic resonance sounding (MRS) technique is a non-
invasive hydro-geophysical tool, which as opposed to other 
geophysical approaches provides a direct measure of the water 
content with depth, but also indirectly the mean pore size of 
the aquifer (Hertrich, 2008). However, one of the major 
limitations of the MRS method is electromagnetic 
interferences. The MRS signal usually varies between ten to a 
couple of thousand nV and the ambient noise is often higher. 
Noise can be natural and caused by magnetic storms, 
thunderstorms etc., or man-made, generated by power lines, 
cars, electrical fences etc. Industrial noise is considered to be a 
superposition of harmonics of the industrial frequency 50 or 
60 Hz. The MRS signal is strongly affected by noise and 
different procedures can be employed to eliminate or at least 
decrease the influence of noise during acquisition and data 
processing (Legchenko, 2007). Despite the significant data 
processing and hardware developments (see e.g., Jiang et al., 
2011; Walsh et al., 2011; Falahsafari et al., 2014; Muller-
Petke and Costabel, 2014; Ghanati et al., 2014; Dalgaard et al., 
2014; Ghanati and Fallahsafari, 2015) since the advent of 
SNMR, the application at industrial and urban regions is 

greatly impossible. Typical signal amplitudes of MRS 
measurements are very weak and cannot be readily increased 
relative to the ambient noise level. Hence, it is essential to 
apply robust data processing approaches to the noisy and very 
weak MRS signals. The aim of this study is to tackle the 
application of  a recent non-linear data analysis method, 
complete ensemble empirical mode decomposition (CEEMD), 
with the technique of statistical optimization process (Shahi et 
al. 2011) to retrieve the MRS signals. Moreover, de-trended 
fluctuation analysis (Peng et al. 1994) is used in the 
decomposition modes resulting from applying CEEMD to the 
signal to know whether a specific IMF contains useful 
information or primarily noise. 
 

METHOD AND RESULTS 
 

CEEMD algorithm 
 
The EMD method self-adaptively decomposes a data series 
into a finite set of intrinsic mode functions (IMFs) form the 
highest and the lowest frequencies. Any IMFs should satisfy 
two specifications: 1) the number of maxima and minima and 
the number of zero crossings must either equal or differ by one 
at most; 2) at any given data, the mean value of the envelope 
defined by the local maxima and the envelope by the local 
minima should be zero. The IMFs are extracted based on an 
iterative process, called sifting. After extracting all IMFs, 
MRS signal E(t) can be expressed as   
 

E(t) = � IMF
(t) + ℛ
(t)




��
, (1) 

Where ℛ
 is the final residue, IMF
(t) is kth IMF and M is 
the number of extracted IMFs. 
For complicated signals, the major problem of the EMD 
algorithm is the mode mixing caused by the intermittency of 
signals, which renders the EMD unstable (Wu and Huang 
2009). To relieve this drawback, ensemble empirical 
decomposition was suggested by Wu and Huang (2009). 
The prime influence of decomposing through EEMD is that 
the added Gaussian white noises cancel each other in the final 
mean of the corresponding IMFs. This means that the IMFs 
stay within the natural dyadic filter widows, and thus 
appreciably lessen the chance of mode mixing and preserve 
the dyadic property. While EEMD provides great 
improvement over the EMD performance, there are deviations 
from IMFs because the IMFs in EEMD are mean value. 
Moreover, the EEMD algorithm bears the noise in the residue 
while reconstructing the signal. A variation of the EEMD 
algorithm, called complete ensemble empirical mode 
decomposition (CEEMD) was proposed by Torres et al. 
(2011) by which the original signal is fully reconstructed. 
Same as EEMD, the decomposition with the CEEMD 
algorithm is a noise-assisted method. A complete description 
of the concepts of IMFs and CEEMD is in Torres et al. (2011) 
and Ghanati et al. (2014). Decomposition of a signal using 

SUMMARY 
 
One of the most important tasks in magnetic resonance 
sounding (MRS) is the noise removal prior to the signal 
extraction process. In this work a new time-domain 
method based a non-linear adaptive decomposition 
technique called complete ensemble empirical mode 
decomposition (CEEMD) in conjunction with a statistical 
optimization process for enhancing the signal-to-noise 
ratio of the MRS signal is developed. The filtering 
scheme starts with applying the CEEMD method to 
decompose the noisy MRS signal into a finite number of 
intrinsic mode functions (IMFs). Afterwards, a threshold 
region based on de-trended fluctuation analysis (DFA) is 
defined to identify the noisy IMFs, and then the no-noise 
IMFs are used to recover the partially de-noised signal. In 
the second stage, we applied a statistical method based on 
the variance criterion to the signal derived from the initial 
phase to remove the remaining noise. To demonstrate the 
functionality of the proposed strategy, the method was 
evaluated on an added-noise synthetic MRS signal, and 
on field data. The results show that the proposed 
procedure allows us to improve the signal to noise ratio 
significantly, and consequently, extract the signal 
parameters from noisy SNMR data efficiently 
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CEEMD method leads to n-empirical modes and a residual, so 
that the higher frequencies are ordinarily found in the initial 
IMFs and lower frequencies in subsequent IMFs. The 
components with the higher frequencies carry clutter energy 
and contain noise. 
 
De-trended Fluctuation Analysis (DFA) Criterion 
 
 The most critical point is to realize whether a specific IMF 
contains useful information or primarily noise. It should be 
noted that the noise appears in all IMFs, and that is hard to 
eliminate it by discarding just one specific IMF. In this 
section, a novel approach based on the de-trended fluctuation 
analysis (DFA) algorithm is presented for identifying noisy 
IMFs. A brief description of this technique is presented as 
follows: 
For a given MRS signal E(t�), t� = i∆t, i = 1, … , K, with 
sampling period ∆t. 
 
1- Compute the time series mean E� = (1/K) ∑ E(t�)���� . 
 
2- Find integrated time series after removing the average E� as 
 
�(� ) = ∑ ["(� − "$)] &��  ,    1 ≤ i ≤ K      (4) 
 
3- Divide the integrated time series ψ(t�) into N windows of 
length n. 
 
4- For each window, Estimate local trend ψ+(t�) by simply 
fitting a linear line. 
 
5- Calculate the root-mean-square fluctuation F(n), by 
subtracting ψ+(t�) from the integrated series ψ(t�) as 
 
,(-) = .(1//) ∑ [�(� ) − �0(� )]12 �� ,    3 = 1, … , /. 

(5) 

 
6- Repeat steps 3-5, varying the window size between a 
minimum length of 5 samples and a maximum length of K/4 
with K being the number of time series samples. 
 
7- Draw a log-log plot of the root-mean-square fluctuation 
versus the corresponding window lengths resulting in a 
straight line with the slope of Φ, where Φ is called scaling 
exponent. The scaling exponent Φ can be regarded as an 
indicator of roughness. The larger value of Φ, the smoother is 
signal. In other words, small value of it signifies more rapid 
fluctuations (Mert and Akan 2014). Therefore, according to 
the above assumption, in this study, CEEMD based de-noising 
algorithm is implemented base on the use of DFA slope, φ as 
a threshold in order to distinguish the noisy IMFs. 
Consequently, a threshold region is defined as α = Φ ± 0.25 
where the region is defined based on the values of the scaling 
exponent corresponding to white Gaussian noise (0.5), pink 
noise (1.0) and Brownian noise (1.5). Note that the SNMR 
signals are primarily contaminated with harmonic and 
stochastic noises (e.g., white Gaussian noise and spiky 
events). At the first stage of the proposed method (i.e., 
CEEMD), we aim to mitigate white Gaussian noise by means 
of excluding the IMFs with Φ in the threshold region. Hence, 
based on the above description, the threshold region α is 
defined with Φ = 0.5. 
 
Statistical Optimization Process 
 
The next algorithm implements SNMR signals de-noising in a 
statistical framework under an optimization problem, called 

variance criterion (Shahi et al., 2011) We initially express a 
brief review on MRS basics. MRS energizes the protons in 
groundwater by transmitting a resonance electromagnetic 
pulse with the Larmor frequency. The energized protons then 
generate a secondary magnetic resonance signal which is 
given by  
 
"(�, =) = ">(=)?@A (−�/B1∗(=))DEF (2GHI� + J(=))                  (2) 
 
Where E> is the initial maximum voltage, T1∗ is the transverse 
relaxation time, fM is the Larmor frequency and Θ is the phase 
shift between the returned signal and the excitation current. 
 
The detection of the signal is realized by the synchronous 
detection technique. Mathematically, this procedure can be 
expressed as a multiplication with the complex term 2eP1QRST 
(Levitt, 1997), which gives  
 
"UVWX YW Z[(�) = "> ?@A \− X

]̂∗_ [?@A( `(2GHa + 2GHI) � + `J>) +
?@A( `(2GHa − 2GHI) � − `J>)],                                                (3)   
 
after applying the low-pass filter, we get 
 
"bZXZcX d0(�) = "> ?@A \− X

]̂∗_ ?@A( `(2GH>� − J>))                     (4) 

 
The equation 4 indicates the ideal form of the MRS signal. But 
generally, this is not true and MRS signal is, in fact, 
contaminated with noise. Thus, the real noisy MRS signal can 
be expressed as follows. 
 

"bZXZcX d0
ed fg (�) = "> ?@A \− X

]̂∗_ [?@A( `(2GH>� − J>))] +
∑ h2?@A (`2GH2� + `J2)2 + ?idjYWZk(�),                        

                               (5) 
 

The second term of the above equation is related to the 
harmonic noise part and elmnopqr(t) denotes the stochastic 
noise part containing the background noise, and spiky events. 
Spiky signals appear randomly, so that these noise features are 
considered as parts of  elmnopqr(t) (Strehl, 2006). The main 
objective is to remove the noise from equation 5 and access to 
equation 4. Noise cancellation from the MRS signal requires 
perception about the noise parameters and the ideal signal 
features. The mean or the area under the curve is an exclusive 
characteristic of these two components. The mean of two 
signals, i.e., the ideal signal and noise signal, is equal to the 
summation of the mean of each one. On the other hand, the 
mean of the real signal is equal to the summation of the mean 
values of the ideal signal and noise. Mathematically, this can 
be defined as 
A = At + Au                                                                        (6) 
 
Where A denotes the area under the curve of the real signal, 
At is the area of the ideal signal of equation 5 and Au is the 
noise area. As the mean value of the noise (or its area under 
the curve) is approximately zero ( Strehl, 2006; Shahi et al, 
2011), therefore the signal mean will not be changed after 
being noisy. considering the mentioned assumption, we get  
 
"> = v/(1 − ?@A (−�/B1∗))B1∗                                              (7) 
 
Whereas, NUMIS equipment records the noise automatically 
prior to the MRS measurement thus the parameters of the 
environment noise can be measured. Variance is one of such 
parameters which fully identified before the original signal 
record. Thus, comparison of the variance of the estimated and 
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recorded noises makes possible to discern the precision of the 
values of E> as well as T1∗. In order to achieve correct E> and 
T1∗, an optimization problem based on the variance of the 
estimated and recorded noises is defined. The calculated 
variance is compared with the variance of the recorded noise 
in order to realize the E> variations, then the estimation and 
alteration of E> are continued until the difference between the 
variance of the estimated noise and the variance of the 
recorded noise will be approached to approximately zero. 
When E> is flawlessly approximated, we will be ensured that 
the value of T1∗ is accurate as well as the estimated ideal signal 
is considerably noiseless. 
 
Numerical results 
 
We first generate an exponentially decaying signal with initial 
amplitude E> = 140 nV and a decay time T1∗ = 190 ms. Then, 
three different noise levels which contain deterministic (i.e., 
harmonic noise) and stochastic (i.e., uncorrelated Gaussian 
distributed noise and spiky events) noises, with SNRs: 3.9, 
5.07 and 9.6 dB, were added to the synthetic signal and the 
three methods CEEMD-DFA, variance criterion, and the 
combined CEEMD-DFA-variance criterion methods were 
used for de-noising. Figure 1 shows the simulated SNMR 
signal (SNR= 5.07 dB) contaminated with harmonics, spiky 
events and Gaussian noise with standard deviation σ = 30 nV 
and mean value m = 0. The noise cancelation is carried out in 
two stages here: the CEEMD method is just implemented at 
the first stage, at the second stage the variance criterion is 
implemented as well. Figure 2 shows the IMFs obtained from 
the decomposition of the synthetic SNMR signal. Also, the 
DFA scores of the corresponding IMFs are illustrated in 
Figure 3. As described in the previous sections, the IMFs 
which have lower fluctuation value Φ than the threshold α are 
identified as noisy components, and consequently, are not 
included into reconstruction. Thus the partial signal 
reconstruction is the sum of the IMFs from 4 to 8 which 
results in the de-noised signal shown in Figure 4. It can be 
seen that the harmonic and Gaussian noises as well as outliers 
have been considerably removed through the proposed 
CEEMD-DFA based de-noising algorithm. In addition, the 
signal-to-noise ratio increases from 5.07 dB (related to the 
noisy signal) to 21.14 dB. Afterwards, the signal obtained 
from the previous stage enters the variance criterion to cancel 
the remaining noise in the signal and estimate the concerning 
parameters. So, by implementing the second stage, the signal-
to-noise ratio increases to 28 dB and the SNMR signal 
parameters E> and T1∗ are estimated 141 nV  and 200 ms with 
mean squared error (MSE) 6.68 while the value of MSE 
obtained by using merely use of variance criterion is 16.27 
(see Table 1). Figure 5 displays the outcome of applying the 
CEEMD-DFA filtering scheme and the proposed combined 
method to the simulated MRS signal (5.07 dB).  
 
Table 1. Estimated parameters and SNR and MSE 
performance of variance criterion and joint application 
CEEMD-DFA and variance criterion.  

 
                                        Signal  (SNR=5.07 dB) 

 

Evaluation   
Parameters 

Est. E0 
(nV) 

Est. }~ ∗  
(ms) 

SNR (dB) MSE 

Variance 
Criterion 

143.1 206 24 16.27 

Integration of 
CEEMD-DFA 
with Variance 
Criterion 

141 200 28 6.69 

 
CONCLUSIONS 

 
We presented a novel method for reducing stochastic and 
harmonic noises from SNMR signals, integrating the de-
trended fluctuation analysis (DFA) thresholded complete 
ensemble empirical mode decomposition (CEEMD) with 
statistical optimization process through variance criterion. We 
initially applied a recent developed procedure called DFA to 
the decomposition modes resulting from the CEEMD 
algorithm in order to distinguish the noise components and 
noise free signal components. Based on a predefined threshold 
region, the IMF(s) having lower DFA score (scaling exponent) 
than the threshold are excluded in the reconstruction phase to 
obtain partially de-noised version of the signal. Subsequently, 
the variance criterion is applied to the obtained signal from the 
previous stage to remove the remaining noise. The results of 
numerical experiments showed quite reasonable performance 
of the proposed combined method compared to merely use of 
CEEMD or variance criterion in noise cancellation that finally 
leads to more accurate and reliable recovery of the signal 
parameters. 
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Figure 1. Noise free (red) and Noise-added SNMR signal 
(black) with ��� = �. �� dB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Illustration of resulting IMFs after Complete 
Ensemble Empirical Mode Decomposition of the noise-
added SNMR signal shown in fig 1. 

 
Figure 3. DFA scores (scaling exponent) of the IMFs 
resulting from applying CEEMD to the simulated signal 
shown in Fig. 2. 
 

 
 
Figure 4. Noise-added SNMR signal (black) with ��� =
�. �� dB and de-noised signal from CEEMD-DFA (blue) 
with  ��� = ~�. �� dB.  
 

Figure 5. Noise free signal, Noise-added SNMR signal 
(��� = �. �� dB), de-noised signal from CEEMD-DFA 
(��� = ~�. �� dB) and estimated signal using CEEMD-
DFA and variance criterion (��� = ~� dB) with �~∗ = ~�� 
and �� = ���. 


