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INTRODUCTION 

 
It is known that inversion of Magnetic Resonance Sounding 
(MRS) data is ill-posed. It means that experimental signals can 
be fitted equally well by different inverse models. These 
models are called the equivalent models. Selection of the best 
model from the pool of equivalent models can be done using 
additional information about solution (boreholes, other 
methods) or assumptions about solution shape.  
 
One of the most popular methods is the Tikhonov 
regularization (Legchenko and Shushakov, 1998). It allows 
obtaining unique solution based on the assumption of the 
smoothness of the inverse model. Assumptions on the solution 
shape can be also used for performing blocky inversion 
(Mohnke and Yaramanci, 2002). In both cases the smoothness 
constraint or the number of block for inversion may be not 
fully justified, especially when investigating 2-D and 3-D 
targets (Legchenko et al., 2011) and obtained equivalent 
solutions do not provide straightforward information about 
uncertainty in the inverse model.  
 

Uncertainty in the inverse model can be estimated using 
different methods. The singular value decomposition (SVD) 
allows estimating resolution of the linear inverse problem for a 
general case without investigating particular data sets 
(Weichman et al., 2002). The Monte Carlo inverse modeling 
allows investigating solution space for both linear and non-
linear inverse problems and could be applied to the analysis of 
any particular data set (Guillen and Legchenko, 2002; 
Chevalier et al., 2014). The linear programming technique 
was also reported to be used for investigating solution space 
considering different limitations applied to the solution 
selection (Guillen and Legchenko, 2002).  
 
The majority of reported approaches to MRS data inversion do 
not take into account the fact that different volumes of water 
may produce similar signals and consequently different 
equivalent models may provide different volumes of water. 
We used this property of MRS inverse problem for developing 
a simple and practically convenient approach for investigation 
of the uncertainty in the inverse model. We propose to use the 
total or partial volume of water under MRS loop as the 
criterion for selection of the inverse models. Instead of using 
only one unique solution we propose additionally to take into 
account solutions that provide the minimum and the maximum 
volumes of water. Thus, we obtain three inverse models: an 
optimal model (considered to be the best for any justified 
reason) and two models that are equivalent to the best model 
but corresponding to the maximum and the minimum volumes 
of water. We applied this criterion to investigation of the Tête 
Rousse glacier where estimation of the maximum and the 
minimum possible volumes of water accumulated in the 
glacier was a matter of particular importance (Vincent et al., 
2012; Legchenko et al., 2014). 
 

METHOD  
 
MRS measurements can be carried out by measuring either 
free induction decay (Legchenko and Valla, 2002) or spin 
echo (Legchenko et al., 2010) signals. In both cases MRS 
integral equation can be approximated by a system of 
algebraic equations and in a matrix notation the approximating 
equation can be written as 
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SUMMARY 
 
In this paper we present an approach for analyzing 
uncertainty in the MRS inversion. Additionally to any 
other inversion strategy we propose to use the total or 
partial volume of water under MRS loop as the criterion 
for estimation of possible variations in the selected 
solution so that the maximum and the minimum volumes 
of water correspond to two extreme but still equivalent 
inverse models. We apply jointly the Monte Carlo and 
regularization methods for investigating solution space 
using uncertainty in the water content provided by the 
SVD analysis. A big advantage of the Monte Carlo 
modeling is its suitability for both linear and non-linear 
inversion and the possibility to use the Monte Carlo 
method without specific assumptions about investigated 
inverse problem. Experience gained from the numerical 
modeling and processing of field data shows that this 
approach is very convenient and has particular advantage 
when the volume of water under MRS loop is one of the 
subjects of MRS study.  
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the water content and the symbol T denoting transposition.  
 
For resolving Equation (1) we assume a non-negative solution 
(wj ≥0) and optimization is carried out so that  
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For inversion, one of the three approaches can be used.  
 
1) If MRS signal has only real part (no dephasing) then 
inversion can be carried out using amplitudes (Legchenko and 
Shushakov, 1998). In this case ai,j and e0,i are real numbers. 
The amplitude inversion is simple and has advantage to be 
robust.  
 
2) If dephasing takes place then ai,j and e0,i are complex 
numbers and inversion should be carried out using complex 
signals (Weichman et al., 2002; Braun et al., 2005). Inversion 
of complex signals has better resolution but requires data of a 
good quality and accurate mathematical model.  
 
3) If the mathematical model or/and data quality are not 
accurate enough but dephasing takes place then inversion can 
be performed using complex numbers but optimizing only 
amplitudes. In this case experimental and theoretical signals 
(e0,i and emod,i respectively) are complex numbers but 
optimization is carried out for the amplitudes. This procedure 
can be written as  
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This approach is a compromise between two previous cases 
and has the disadvantage to be a non-linear inversion.  
 
For investigating resolution of Equation (1) we assume that 
the inverse problem is linear and noise is normally distributed. 
In this case we can use the SVD analysis (Aster et al., 2005). 
For that, we can present the matrix A as  

TUSVA = ,     (4) 

where U is an of I×I, orthogonal matrix representing the data 
space, V is an J×J, orthogonal matrix representing the model 
space and S is I×J diagonal matrix with nonnegative diagonal 
elements called singular values. The resolution can be 
estimated using the model resolution matrix Rm, which is a 
symmetric matrix J×J describing how well the recovered 
model is able to represent the original model  
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Let I to be the identity matrix. If Rm = I then the model will be 
perfectly recovered by the inversion. Otherwise the resolution 
is not perfect. SVD can be carried out so that the smallest 
singular values are significant and hence Rm = I. It is one of 
the possible ways to obtain a more stable regularized solution.  

 
Another possibility is based on the well-known Tikhonov 
regularization method applying the smoothness-constrain. In 
order to find an approximate solution of the Equation (1), this 
method supposes minimization of the Tikhonov functional  
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where η>0 is the smoothing factor.  
 
The model resolution matrix for the Tikhonov regularization 
can be written as  
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where F is J × J diagonal matrix with diagonal elements given 
by the filter factors  
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with sj being the singular values.  
 
For estimating inversion uncertainty caused by experimental 
noise we assume independent and identically distributed 
normal data errors σΝ

 2. In this case the covariance for the 
model becomes  

T
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The corresponding 95% confidence intervals for wη can be 
computed as  
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and the 1.96 factor arises from the definition of the 95% 
confidence intervals. Note that the use of regularization 
renders solution more stable but less accurate. Selection of the 
smoothing factor is a tradeoff between stability and accuracy.  
 
It follows from Equation (9) that the data uncertainty σ is an 
important criterion for inversion. In MRS the data uncertainty 
is composed of three major components: experimental error 
caused by external and internal noise (σΝ), discretization of 
the integral equation (σA) and consistency of the mathematical 
model and the subsurface (σG).  

GAN
σσσσ ++= .     (12) 

In NUMIS system noise is estimated in the noise measuring 
window before injecting the first pulse. Measured average 
amplitude of the noise (EN) is a relatively stable parameter 
characterizing noise and the phase of the noise records can be 
considered as random value relative to the pulse. If the noise 
magnitude stays relatively stable during measuring then we 
can assume that noise amplitude varies in the interval between 
-EN and +EN . As the phase is random we can assume that 
noise has normal distribution around zero and that the 
measured noise amplitude corresponds to the 95% confidence 
interval of the normal distribution. Under these assumptions 
we obtain an estimation of the noise standard deviation as 

2/96.1/
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Note that the estimation given by Equation (13) is an 
approximation because noise is measured before the pulse and 
thus, the true noise added to the MRS signal is known only 
approximately. The second component of the data uncertainty 
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σΑ depends on the matrix A and on the regularization. Indeed, 
it is known that inversion acts as a filter. The bandwidth of 
this filter depends on the filter factor (Equation 8) and on the 
number of model layers. Larger number of layers makes the 
bandwidth larger and consequently σΑ smaller. Geological 
noise σG is usually unknown because the subsurface is 
unknown and thus we have an additional uncertainty caused 
by the imperfection of our mathematical model.  
 
Discretization of the integral equation consists of defining in 
the matrix A the depth zj and thickness ∆zj of model layers so 
that  
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It is also recommended to respect (Legchenko and Shushakov, 
1998)  
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Number of model layers for inversion can be selected with 
respects to Equations (14 and 15) so that Rm ≈ I (Equation 5).  
 
When inversion is linear and noise has normal distribution 
Equation (10) allows estimating uncertainty for each value 
wmod,j given by the Tikhonov regularization. However, these 
conditions are not always respected and equivalent solutions 
can be additionally investigated using the Monte Carlo 
approach. For that, we generate models randomly varying each 
value wj within the uncertainty given by SVD  
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and considering only positive water contents wj ≥0. For 
generating pseudo-random numbers ranging between 0 and 1 
the multiply-with-carry method was used (Marsaglia and 
Zaman, 1991).  
 
For selecting equivalent solutions we propose to use such a 
physically justified parameter as the volume of water under 
MRS loop computed as 
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were wj and ∆zj are the water content and thickness of 
corresponding layer j. Note that this parameter can be easy 
extended to the 2-D and 3-D inversions.  
 
Then, we consider the best model with V=Vmod and two 
extreme models equivalent to the best model with 
corresponding volumes Vmax and Vmin. These extreme models 
can be selected by the Monte Carlo method for the data 
uncertainty σ so that  
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where N is the number of models.  
 
The extreme solutions corresponding to Vmin=V(wmin) and 
Vmax=V(wmax) can be also found by minimizing the following 
functions  
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where V(w) is computed using Equation (17) and for both Vmin 

and Vmax, the penalty function for volume is assumed to be 
linear and  α is selected so that  
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Optimization is carried out using the best model (wmod,j) and 
varying the water content in each layer (wj ≥0) within the 
95% confidence interval around the best model  
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Thus, the inversion flowchart consists of a few steps: SVD-
based discretization of the linear equation with respect to 
Equations (5, 14, 15); inversion of MRS data with or without 
regularization and estimate of the uncertainty (Equation 11); 
investigation of the solution space with the Monte-Carlo 
method and selection of the equivalent models corresponding 
to the Vmax and Vmin criteria using the Monte Carlo (Equations 
16, 17) or regularization methods (Equations 18-20).  
 

RESULTS  
 
We demonstrate our approach with a synthetic model 
consisting of a well-defined water-saturated layer (w=20%) 
located at a depth between 50 and 60 m. For modeling we 
assumed a 100×100 m2 square loop and the Larmor frequency 
of 2000 Hz. Synthetic signal was contaminated by a 30-nV 
random noise. We discretize the integral equation using the 
resolution matrix as the criterion (Equations 14, 15). We 
consider three cases: non-damped inversion (η=0), smooth 
inversion (η=ηΤ  is selected after Tikhonov regularization) and 
damped inversion (a small regularization with η=ηΤ /10). 
Figure (1a) shows that without regularization inversion is too 
sensitive to noise and becomes stable with the smoothing 
factor η increasing. The width of the probability density 
function (PDF) obtained with the Monte Carlo modeling 
(Figures 1b and 1c) is in a good agreement with the SVD-
provided estimates.  

 
Figure 1. a) 95% confidence interval computed considering 
the non-damped inversion (black line), the damped 
inversion (blue line) and the smooth inversion (red line). b) 
PDF for RMSE computed considering the damped and 
smooth inversions (blue and red lines respectively), 
estimated noise level (black dashed line), RMSE of the 
damped inverse model (blue dashed line) and RMSE of the 
smooth inverse model (red dashed line). c) PDF of the 
volume of water of the corresponding models.   
 
Figure (2) shows the minimum and maximum water volume 
corresponding to the damped and smooth solutions. In 
practice, noise is known only approximately and the inversion 
uncertainty can be estimated for noise assumed equal to the 
RMSE of the best model. Figure (3) shows the damped and 
the smooth solutions and corresponding synthetic signals. 
Summary of the inversion results is presented in Table (1).  
 
One can see that estimated water volume is largely dependent 
on the assumed shape of the solution. Consequently, if reliable 
information about the solution is not available (sharp or 
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smooth) then the extreme solutions should be selected 
considering different inversion algorithms. In our example 
Vmin solution should be selected from the damped inversion 
and Vmax – from the smooth inversion. In this case, extreme 
solutions corresponding to Vmin=2.19 m3/m2 and Vmax=3.23 
m3/m2 are shown in Figures (3a) and 3b respectively.  
 

 
Figure 2. Volume of water versus RMSE for different 
models computed using the Monte Carlo and the 
regularization algorithms: a) damped inversion; b) smooth 
inversion.  

 

 
Figure 3. Equivalent models: a) the damped inversion; b) 
the smooth inversion. c) corresponding MRS signals (c).  
 

Parameter Damped Smooth 
Synthetic noise estimate (nV) 15.8 15.8 

RMSE (nV) 16.57 18.82 
Volume initial model (m3/m2) 2.0 2.0 

Volume min (m3/m2) 2.19 3.04 
Volume inverse model (m3/m2) 2.23 3.14 

Volume max (m3/m2) 2.41 3.23 

Table 1. Summary of the inversion results corresponding to 
the damped and smooth solutions.  
 

CONCLUSIONS 
 
In this paper we presented an approach for estimation of the 
inversion uncertainty based on computing the maximum and 
the minimum water volumes provided by different solutions as 
the criterion of selection of the extreme equivalent models. 
For the analysis we used the Monte Carlo and the 
regularization methods applied taking into account 
preliminary estimates of the solution uncertainty provided by 
the SVD analysis. We demonstrated numerical 
implementation of our approach for the 1-D case using a well-
defined synthetic model contaminated by random noise.  
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