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INTRODUCTION 
  

The evaluation, management, and protection of our 

groundwater resources requires an ability to obtain reliable 

estimates of subsurface properties that control the movement 

of fluids in the near-surface region (up to ~100 m below the 

surface).  One such property is hydraulic conductivity (K) or 

permeability (k), which describe the ease with which water 

flows in the subsurface. Surface or logging nuclear magnetic 

resonance (NMR) provide a means of estimating these 

parameters in the saturated zone of the near-surface (Dlubac et 

al., 2013; Walsh et al., 2013). The development of reliable 

tools for measuring NMR has necessitated the simultaneous 

development of a model that will relate permeability or 

hydraulic conductivity to the NMR measurement. The 

petroleum industry has already adopted the Schlumberger-

Doll Research (SDR) equation (Kenyon et al., 1988) as a way 

to estimate permeability from logging NMR measurements of 

the relaxation time constant T2. The SDR equation contains 

empirical constants, and significant research has led to 

standard values for these constants in consolidated sandstones, 

materials of interest to industry. Reasonable accuracy can be 

obtained by using these constants without a need for local 

calibration. However, recent studies have shown that different 

constants are needed for unconsolidated sediments (Dlubac et 

al., 2013). Knight et al. (2015) examined this question further 

and specifically looked at multiple near-surface sites where 

both permeability and logging NMR measurements were 

available and was able to show that three different sites with 

very different lithologies could be modeled with similar 

constants. The purpose of the current study is to re-visit the 

data used by Knight et al. (2015) to better understand the 

relationship between T2 and K. The methodologies employed 

provide a useful approach to evaluating the performance of the 

model as well as exploring the total space of allowable 

parameter values for the model. While we analyze logging 

NMR data, we anticipate that the results will be applicable to 

the interpretation of surface NMR T2 data as well. 

 

METHOD AND RESULTS 

 
We re-analyze the data from the extensive field surveys 

conducted by Knight et al. (2015). NMR and hydraulic 

conductivity data were obtained from three sites, GEMS2 

(Kansas), Larned (Kansas), and Leque Island (Washington 

state). These sites and their characteristics and lithologies are 

fully described in Knight et al. (2015). There are a total of 112 

independent measurements of both permeability and NMR 

measurements, distributed in 9 wells. The entire dataset is 

plotted in Figure 1.   

 

We use a number of different methods to re-analyze the data 

from Knight et al. (accepted) in order to understand various 

aspects of the data and model, as well as to understand the 

importance of the various parameters involved in the SDR 

equation and the range of uncertainty in these parameters. We 

want to estimate the uncertainty in the constants in our model, 

instead of optimizing for the best-fitting values, because these 

are likely to be biased by noisy data and imperfect models. 

 
The model we consider is the Schlumberger-Doll Research 

(SDR) equation for predicting permeability from T2ML and 

porosity (ϕ), given by  

 

   2

nm

SDR MLK b T    (1) 

 

where b, n, and m are empirical constants that can be 

optimized to provide the best fit between predicted and 

measured permeability (e.g. Kenyon et al., 1988). The model 

is based on the Kozeny-Carmen relationship (Carmen, 1956; 

Kozeny, 1927). In this form the equation is non-linear and 

thus would present a challenge to find the best-fitting 
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parameters. However, we can transform the equation into 

logarithmic space, which turns it into a linear problem 

 

    
10 10 10 2log( ) log ( ) log ( ) log (T )SDR MLK b m n       (2) 

 

This is the equation for a plane in 3-dimensional log space, 

with log10(T2ML) and log10(ϕ) acting as the independent 

variables and log10(k) the dependent variable. This formulation 

has the benefit that extreme values of permeability are equally 

weighted and it is completely linear. We will work strictly 

with the logarithmic form of the SDR equation for this study. 

 

The four methods we use are a stepwise analytical linear 

regression (ALR), parameter grid search, bootstrap, and 

Markov Chain Monte Carlo (MCMC) using Bayesian 

statistics. The linear regression is an analytical machine 

learning algorithm. The grid search works by plotting a 

residual associated with a large number of value-pairs for two 

parameters and identifying which value pairs have a low 

residual. Bootstrap and MCMC are both Monte Carlo 

(sampling) approaches that use a large number of iterations to 

construct density functions that are used to estimate the range 

of parameters that fit the data. Bootstrap works by repeatedly 

selecting a subset of the data with replacement and optimizing 

for the best-fitting parameters (Parsekian et al., 2014). MCMC 

evaluates the likelihood of thousands of parameter values and 

builds a distribution based on which values are more likely 

given the data.  

 

We present the results for each of the empirical constants in 

the SDR equation below (m, n, and b), as well as the data 

errors estimated from the MCMC inversion. Our results are 

only valid for estimating hydraulic conductivity using the 

linearized, log-space Equation (2). 

 

NMR-derived estimates of porosity (𝛟) do not contribute 

significantly to predicting permeability in unconsolidated 

sediments. We find that porosity acts essentially like a noisy 

constant. We find that porosity does not improve the 

prediction of K in our data. We can thus simplify the SDR 

equation (Equations 1 & 2) to include just the mean log decay 

time, T2ML. We can express this modified SDR equation as the 

“Knight-Maurer” equation for predicting hydraulic 

conductivity in unconsolidated sediments:  

 

  2

n

KM MLK b T    (3) 

 

Of course, any model with more free parameters will always 

fit the data at least as well or better than a model with fewer 

parameters, but for predictive value, fewer parameters often 

perform better. Because we want to estimate permeability at 

many sites other than those we use to derive the parameter 

values, having a simpler model that does equally well is a 

strong advantage. 

 

Figure 1 shows results for n on each well. Most of the wells 

give values close to 1 or 2. This is consistent with the 

expectation that n indicates the diffusion regime of the 

location, with n = 1 corresponding to a slow diffusion regime 

and n = 2 corresponding to a fast diffusion regime. We also 

found using MCMC that if we fix the value of n to either 1 or 

2 we can still fit the data within errors at all sites. The 

maximum likelihood estimates are around 1.7 for the entire 

dataset, indicating that there is likely a mixture of both fast- 

and slow-diffusing sites within our dataset. 

 

 
Figure 1.  MCMC Results for m, n, and 𝛔 estimated for 

each well in our datset. n is the exponent on T2ML and m is 

the exponent on porosity in the SDR equation (Equation 2) 

for each of the wells in our dataset. (a) Distributions on n. 

Notice that one site, C1, has a maximum at n = 0. This site 

is characterized by a small range in hydraulic conductivity 

and high noise, and fits perfectly within a scheme with n = 

1 or 2 when combined with the other data, thus is not a 

robust result. (b) Distributions on m. Note that in some 

cases, slightly negative values are preferred, some slightly 

positive, and overall there is no significant trend similar to 

that for n. This is evidence that porosity is not really 

improving the prediction; i.e. we are merely fitting noise 

when we include porosity. Setting m = 0 gives us almost as 

good a fit at every site and makes for a simpler model. (c) 

Distributions on 𝛔(K). Estimating the error in the data 

given our model is very important for understanding how 

well we match the data. An error of ~1 (log of hydraulic 

conductivity) indicates that we only resolve hydraulic 

conductivity to within an order of magnitude. The results 

shown here are for each individual site; for the whole site 

we get an average error of approximately 0.75 log units.  

 

Once we have fixed the values of m (=0) and n (we use n = 2 

for the remainder of this study), we can solve for the value of 

and uncertainty in b. Figure 2 shows the results for four 

different methods for estimating b: (a) MCMC, (b) bootstrap, 

(c) ALR, and (d) directly estimating from the data for each 

site. The ranges using MCMC and bootstrap overlap 

significantly, indicating that the data do not require multiple 

b-values for each site. The range in b is greater for the ALR 

and direct methods, but this is due to noisy data (direct) and 

incorrect Gaussian assumptions (ALR). Even so, the ranges 

for these methods overlap significantly and have mean values 

close to that of the other methods, around 10-1.5 ≈ 0.0316, with 

the range in most cases extending from 10-1 – 10-2.5 (0.1 – 

0.00316). It appears that a value for b chosen from this range 

should predict K reasonably well for any near-surface 

(unconsolidated) field site. This is a surprising result, but 

consistent with Knight et al., 2015.  

  

Finally, we use the MCMC method to estimate the data 

standard error, σ, given our model and an assumed covariance 

structure. While off-diagonal terms in the covariance matrix 

probably exist in reality, we assume a diagonal covariance 

matrix and compute the scalar weight σ that fits the data using 

the MCMC algorithm. This is found to be approximately 0.75 
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(log hydraulic conductivity units) for the full data set and 

approximately 0.5 for the individual wells.  

 

 

 
Figure 2.  Results from four different methods for 

estimating b in the modified SDR equation (Equation 2) for 

each of the wells in our dataset. For these inversions we 

assume m = 0 and n = 2.  

 

CONCLUSIONS 
 

In this study we have analyzed data collected at three different 

field sites, each with different lithologies, and analyzed it 

using four different methods. Our overall results are consistent 

across all methods and field sites, indicating that our results be 

applicable to more than just our data set. We have shown that 

it should be possible to use NMR data and a modified SDR 

equation with a fixed set of constants to predict hydraulic 

conductivity in unconsolidated sediments, at least to within an 

order of magnitude. We have shown that in unconsolidated 

sediments, porosity does not improve the prediction of 

permeability within our data set, and we assume that this 

extends to all unconsolidated sediments. We propose a set of 

parameter values that can be used to estimate K at all sites 

with unconsolidated sediments. Our results for b are consistent 

with the findings of Knight et al., 2015. Table 1 summarizes 

how our results compare to those of Knight et al. (2015) as 

well as standard values used by industry.  

 

We have taken four different approaches to the problem of 

determining parameter values for the SDR equation. These 

methods are easily applicable to other studies, and represent a 

fundamentally different approach than simply optimizing data 

to find the best-fitting parameter values. We propose that 

researchers collecting new surface or logging NMR data as 

well as independent estimates of permeability would benefit 

from applying these methods to their study. We have also 

simplified the SDR equation by removing the dependence on 

porosity. This should give greater predictability at different 

sites, since there are fewer empirical constants to tune. Based 

on our results, it should be possible for researchers working at 

sites with unconsolidated sediments to predict K to within an 

order of magnitude using NMR estimates of T2.  

 

Table 1. b-values for the SDR equation from this study and 

others. Units are 10-2 m/s3. 

 m = 4 m = 1 m = 0 

Our Study 80 – 

470 

5 – 11 1.5-3.6 

Knight et al., 2015 80 - 570 5 - 12   

Typical Industry  3.4   

Industry Range 3.4 - 

4.25 
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