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MRS inversion for water volume
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SUMMARY

In this paper we present an approach for analyzjng
uncertainty in the MRS inversion. Additionally taya
other inversion strategy we propose to use thd tmta
partial volume of water under MRS loop as the dote

for estimation of possible variations in the sadect
solution so that the maximum and the minimum volsine
of water correspond to two extreme but still eqgleaa
inverse models. We apply jointly the Monte Carladan
regularization methods for investigating solutigmace
using uncertainty in the water content provided thg
SVD analysis. A big advantage of the Monte Caiflo
modeling is its suitability for both linear and rbnmear
inversion and the possibility to use the Monte Gail
method without specific assumptions about invegtigal
inverse problem. Experience gained from the nurakri
modeling and processing of field data shows tha ft
approach is very convenient and has particular ratdge

when the volume of water under MRS loop is onehef 1
subjects of MRS study.
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INTRODUCTION

It is known that inversion of Magnetic Resonance rsiing
(MRS) data is ill-posed. It means that experimesighals can
be fitted equally well by different inverse modelBhese
models are called the equivalent models. Seleafahe best
model from the pool of equivalent models can beedosing
additional information about solution (boreholesthes
methods) or assumptions about solution shape.

One of the most popular methods is the Tikhonov
regularization (Legchenko and Shushakov, 1998xlltws
obtaining unique solution based on the assumptibithe
smoothness of the inverse model. Assumptions osdhgion
shape can be also used for performing blocky inwers
(Mohnke and Yaramanci, 2002). In both cases theoimess
constraint or the number of block for inversion nizy not
fully justified, especially when investigating 2-Bnd 3-D
targets (Legchenko et al., 2011) and obtained adpit
solutions do not provide straightforward informatiabout
uncertainty in the inverse model.
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Uncertainty in the inverse model can be estimatsihgu
different methods. The singular value decomposi(iSD)
allows estimating resolution of the linear invepseblem for a
general case without investigating particular datets
(Weichmanet al., 2002). The Monte Carlo inverse modeling
allows investigating solution space for both lineard non-
linear inverse problems and could be applied tcathedysis of
any particular data set (Guillen and Legchenko, 2200
Chevalieret al., 2014). The linear programming technique
was also reported to be used for investigatingt&miuspace
considering different limitations applied to the lugmn
selection (Guillen and Legchenko, 2002).

The majority of reported approaches to MRS datargsiga do
not take into account the fact that different voasnof water
may produce similar signals and consequently differ
equivalent models may provide different volumeswatter.
We used this property of MRS inverse problem foredigping

a simple and practically convenient approach feegtigation
of the uncertainty in the inverse model. We proposese the
total or partial volume of water under MRS loop &= t
criterion for selection of the inverse models. é&ast of using
only one unique solution we propose additionallyatke into
account solutions that provide the minimum andntiagimum
volumes of water. Thus, we obtain three inverse efsodcan
optimal model (considered to be the best for arstifjad
reason) and two models that are equivalent to #s¢ imodel
but corresponding to the maximum and the minimufomes
of water. We applied this criterion to investigatiof the Téte
Rousse glacier where estimation of the maximum ded t
minimum possible volumes of water accumulated ie th
glacier was a matter of particular importance (‘éimiet al.,
2012; Legchenket al., 2014).

METHOD

MRS measurements can be carried out by measurihgreit
free induction decay (Legchenko and Valla, 2002)spin
echo (Legchenkat al., 2010) signals. In both cases MRS
integral equation can be approximated by a systdm o
algebraic equations and in a matrix notation the@gamating
equation can be written as

Aw=e : @
where A:[a‘ ] is a rectangular matrix oflxJ,
]

e =(e

-
0

T, - is the set of
o,1’eo,2 o,i""eo.l) e0,i eo(qi)
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experimental dataW:(W W )T W =w(AZ) is
W W W i J.

the water content and the symBatienoting transposition.

For resolving Equation (1) we assume a non-negatlion

(w; =0) and optimization is carried out so that
o

Zi(al,JWJ_eO,I)szin. @

i=1 j=1
For inversion, one of the three approaches carsed.u

1) If MRS signal has only real part (ho dephasitiggn

inversion can be carried out using amplitudes (bheg&o and
Shushakov, 1998). In this caag ande,; are real numbers.
The amplitude inversion is simple and has advantagbe

robust.

2) If dephasing takes place they, and e,; are complex
numbers and inversion should be carried out usomgptex

signals (Weichmaset al., 2002; Brauret al., 2005). Inversion
of complex signals has better resolution but rezpuitata of a
good quality and accurate mathematical model.

3) If the mathematical model or/and data qualitg awot
accurate enough but dephasing takes place thersiomecan
be performed using complex numbers but optimizimdy o
amplitudes. In this case experimental and theaesgnals
(e; and e respectively) are complex numbers but
optimization is carried out for the amplitudes. Sprocedure
can be written as

Re(e mod,i)

(Re(ai'j)ij)

Ir'n(emod,i) =;(|m(ai,j)ij) , (3)

— 2 2
emod,i - \/Re(emod,i) + lm(emod')

e, = \/Re(eoyi) 24 Im(e, ) 2

|
RMSE = \/I (e, . —e,)’=min
i=1 ' '

This approach is a compromise between two prevoases
and has the disadvantage to be a non-linear irorersi

For investigating resolution of Equation (1) we uass that
the inverse problem is linear and noise is normaikyributed.
In this case we can use the SVD analysis (Adtet., 2005).
For that, we can present the matas

A=USVT. (4)

whereU is an ofl X/, orthogonal matrix representing the data
spaceV is anJxJ, orthogonal matrix representing the model
space and is 1xJ diagonal matrix with nonnegative diagonal
elements called singular values. The resolution ¢en
estimated using the model resolution mafy, which is a
symmetric matrixJxJ describing how well the recovered
model is able to represent the original model

R =WV (5)

Let| to be the identity matrix. R, =1 then the model will be
perfectly recovered by the inversion. Otherwise réolution
is not perfect. SVD can be carried out so that shmallest
singular values are significant and heftg=1. It is one of
the possible ways to obtain a more stable regedrolution.
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Another possibility is based on the well-known Tikiov
regularization method applying the smoothness-caimstIn
order to find an approximate solution of the Equatf1), this
method supposes minimization of the Tikhonov furrai

M () =

Aw—e0

2 — i (6)
L2+/7 HwHLz-mln
wheres>0 is the smoothing factor.

The model resolution matrix for the Tikhonov regidation
can be written as

R =VFVT, )
my

whereF is J x J diagonal matrix with diagonal elements given
by the filter factors
(o5 ®
i 2 2
s +n

with s being the singular values.

For estimating inversion uncertainty caused by grpmtal
noise we assume independent and identically digtt
normal data errorgy 2 In this case the covariance for the
model becomes

Cov(w ) =0 2VFS2V " )

The corresponding 95% confidence intervals igy can be
computed as

w=w tw (20)
n 09!

57
where

W oge, = 196x% /diag(Cov(w”)j '

and the 1.96 factor arises from the definition lbé t95%
confidence intervals. Note that the use of regméaion
renders solution more stable but less accuratectah of the
smoothing factor is a tradeoff between stability accuracy.

(11)

It follows from Equation (9) that the data uncertgic is an
important criterion for inversion. In MRS the datacertainty
is composed of three major components: experimeartalr
caused by external and internal noisg)( discretization of
the integral equationof) and consistency of the mathematical
model and the subsurfaceg].
o=0 +0 +0 - 12)
N A G
In NUMIS system noise is estimated in the noise sugag
window before injecting the first pulse. Measurecerage
amplitude of the noiseE{) is a relatively stable parameter
characterizing noise and the phase of the noismdeaan be
considered as random value relative to the pufsiel noise
magnitude stays relatively stable during measuthen we
can assume that noise amplitude varies in thevialt®etween
-Ey and #Ey . As the phase is random we can assume that
noise has normal distribution around zero and tthest
measured noise amplitude corresponds to the 95%deone
interval of the normal distribution. Under thesewamptions
we obtain an estimation of the noise standard tevias

o, =E 1196<E /2 (13)

Note that the estimation given by Equation (13) ais
approximation because noise is measured beforpuise and
thus, the true noise added to the MRS signal isvanonly
approximately. The second component of the datentmiaty
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0, depends on the matrx and on the regularization. Indeed,
it is known that inversion acts as a filter. Thenthaidth of
this filter depends on the filter factor (Equati®hand on the
number of model layers. Larger number of layers esathe
bandwidth larger and consequentty, smaller. Geological
noise og is usually unknown because the subsurface is
unknown and thus we have an additional uncertatatysed

by the imperfection of our mathematical model.

Discretization of the integral equation consistadefining in
the matrixA the depttg and thickneséz of model layers so
that

J
0z <z ,Az=z -2,z =) 07" (14)
j max j j+1 j max = j
It is also recommended to respect (Legchenko angi&tkov,
1998)

Az, <Az, <.<A7 <.<Az.. (15)
1 2 j J

Number of model layers for inversion can be setbatéth
respects to Equations (14 and 15) so Byate | (Equation 5).

When inversion is linear and noise has normal idistion
Equation (10) allows estimating uncertainty for lea@lue
Winoaj 0iven by the Tikhonov regularization. However, sbe
conditions are not always respected and equivaehitions
can be additionally investigated using the Monterl€Ca
approach. For that, we generate models randomjyngaeach
valuew; within the uncertainty given by SVD

w=(w —-w__)+2xw__ xrandom (0+1)’ (16)
j modj 095j 095j

and considering only positive water contents >0. For
generating pseudo-random numbers ranging betweserd QL
the multiply-with-carry method was used (Marsagiad
Zaman, 1991).

For selecting equivalent solutions we propose ® sisch a

physically justified parameter as the volume of evainder

MRS loop computed as
J

V(w) =ijAzj

=1

(17

were w; and Az are the water content and thickness of
corresponding layej. Note that this parameter can be easy
extended to the 2-D and 3-D inversions.

Then, we consider the best model wirV,, and two
extreme models equivalent to the best model with
corresponding volume¥,,, andV,,,. These extreme models
can be selected by the Monte Carlo method for tat d
uncertaintyo so that

v min(W) = len(V n)

V (W) = MaxV )

max

,(17)

max) =0

RMSE(V ) =RMSE(V __)=RMSE(V

whereN is the number of models.

The extreme solutions corresponding W;.-V(w,,) and
Vimax= V(Wray) €aNn be also found by minimizing the following
functions

M min (a) = (18)

Aw -e ‘
min 0|

+aVv(w__)=min’
L, min

- _ —mine (19
M max(0/) —HAW max eOHLZ+a/V(w max) =min
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whereV(w) is computed using Equation (17) and for bdgh,

and Vi, the penalty function for volume is assumed to be

linear and a is selected so that
RMSE(V )=RMSE(V )=0" (20)

Optimization is carried out using the best modsgl.;) and
varying the water content in each layey &0) within the
95% confidence interval around the best model

(21)

) < Wj < (Wmodj +W0‘95j) '

(Wmodj -w 095j
Thus, the inversion flowchart consists of a fewpsteSVD-
based discretization of the linear equation witBpeet to
Equations (5, 14, 15); inversion of MRS data withaithout
regularization and estimate of the uncertainty @iqun 11);
investigation of the solution space with the Mo6&ro

method and selection of the equivalent models spaeding

to theV,ux andV,,, criteria using the Monte Carlo (Equations

16, 17) or regularization methods (Equations 18-20)

RESULTS

We demonstrate our approach with a synthetic model

consisting of a well-defined water-saturated lag®r20%)
located at a depth between 50 and 60 m. For map&lia

assumed a 100100 nf square loop and the Larmor frequency

of 2000 Hz. Synthetic signal was contaminated b30anV
random noise. We discretize the integral equatisimguthe
resolution matrix as the criterion (Equations 14).1We
consider three cases: non-damped inversigeO), smooth

inversion (7=n7r is selected after Tikhonov regularization) and

damped inversion (a small regularization wit7/10).
Figure (1a) shows that without regularization irsin is too
sensitive to noise and becomes stable with the grimap

factor 17 increasing. The width of the probability density

function (PDF) obtained with the Monte Carlo modgli
(Figures 1b and 1c) is in a good agreement with SK®-
provided estimates.

a
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Damped inversion

0.1

Sme
------ Noise
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32

Volume (m3/m2)
Figure 1. a) 95% confidence interval computed considering
the non-damped inversion (black line), the damped
inversion (blue line) and the smooth inversion (red line). b)
PDF for RMSE computed considering the damped and
smooth inversions (blue and red lines respectively),
estimated noise level (black dashed line), RMSE of the
damped inverse model (blue dashed line) and RM SE of the
smooth inverse model (red dashed line). ¢) PDF of the

volume of water of the corresponding models.

T T
40 80 18 20
Depth (m) RMSE (nV)

Figure (2) shows the minimum and maximum water n@u
corresponding to the damped and smooth solutions.
practice, noise is known only approximately andithersion

uncertainty can be estimated for noise assumed! eguae

RMSE of the best model. Figure (3) shows the dangretl
the smooth solutions and corresponding synthetimads.

Summary of the inversion results is presented il él).

One can see that estimated water volume is ladgghendent
on the assumed shape of the solution. Consequéntiable
information about the solution is not available &igh or
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smooth) then the extreme solutions should be salect
considering different inversion algorithms. In oexample
Vmin Solution should be selected from the damped inwers
and V, — from the smooth inversion. In this case, extreme
solutions corresponding t¥in=2.19 M*/n? and Vie=3.23
m°/n? are shown in Figures (3a) and 3b respectively.

® @ Reguarization

® @ Monte Carlo Vmean
------ Monte Carlo Stand.Dev.
- RMSE threshold

Volume (m3/m2)
Volume (m3/m2)

2254 F

16 2 186 19.4

18 20 18.8 19 19.2
RMSE (nV) RMSE (nV)
Figure 2. Volume of water versus RMSE for different
models computed using the Monte Carlo and the
regularization algorithms: a) damped inversion; b) smooth
inversion.
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Figure 3. Equivalent models. a) the damped inversion; b)
the smooth inversion. c) corresponding MRS signals ().

Parameter Damped Smooth
Synthetic noise estimate (nV) 15.8 15.8
RMSE (nV) 16.57 18.82
Volume initial model (MYm?) 2.0 2.0
Volume min (n/m?) 2.19 3.04
Volume inverse model (ffim?) 2.23 3.14
Volume max (fYm?) 2.41 3.23

Table 1. Summary of theinversion results corresponding to
the damped and smooth solutions.

CONCLUSIONS

In this paper we presented an approach for esbmaif the
inversion uncertainty based on computing the mawinand

the minimum water volumes provided by differentusiains as

the criterion of selection of the extreme equivalerodels.
For the analysis we used the Monte Carlo and the
regularization methods applied taking into account
preliminary estimates of the solution uncertaintgyided by

the SVD analysis. We demonstrated numerical
implementation of our approach for the 1-D casegsi well-
defined synthetic model contaminated by randomenois
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