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INTRODUCTION 

  

Perhaps the final step in obtaining an estimate of the presence 

of groundwater in the subsurface is through inversion of the 

recorded data set to obtain a model of groundwater content that 

is consistent with the data.  This is easily done through an SVD 

inversion (eg), or through an L2 inversion of the groundwater 

parameters.  In this paper, I present an inversion scheme based 

on the principle of maximum entropy. 

 

FORWARD MODEL 
 

The forward model operator for groundwater content is the 

well-known linear operation of the kernel function that operates 

on the water content model parameters to obtain the in-phase 

and quadrature components of the free induction decay (𝑇2
∗) that 

are produced from the variation of pulse moments  

 

𝒈(𝒎) = 𝑮 ∙ 𝒎, 
 

where 𝑮 is the linear forward model kernel operator, and 𝒎 is 

the vector of model parameters, ie the water content in the earth 

(eg, Legchenko and Shushakov, 1998).  In a typical L2 

inversion, the function to be minimised is the following: 

 

2𝐹 = (𝒈(𝒎) − 𝒅𝑜𝑏𝑠)′𝑪𝐷
−1(𝒈(𝒎) − 𝒅𝑜𝑏𝑠)  

+ (𝒎 − 𝒎𝒑𝒓𝒊𝒐𝒓)′𝑪𝑚
−1(𝒎 − 𝒎𝒑𝒓𝒊𝒐𝒓), 

 

where 𝒅𝑜𝑏𝑠 are the in-phase and quadrature amplitudes of the 

signal, 𝑪𝐷
−1 is the inverse of the data covariance matrix, 𝒎𝒑𝒓𝒊𝒐𝒓 

is the prior model (to be discussed), and 𝑪𝑚
−1 is the inverse of 

the model covariance matrix, typically assumed to be some sort 

of Tikhonov regularisation matrix used to stabilise the 

inversion.  In this paper, we will assume that 𝑪𝑚
−1 is a simple 

diagonal matrix of varying model weight 𝛼, where 𝛼 is adapted 

through a line search in order to make the χ2 value equal to 2N, 

N being the number of data points (ie, in-phase and quadrature 

amplitudes) (Tarantola, 2005). 

Alternatively, we may wish an L1 norm on the data space, with 

an L2 norm on the model space.  The objective function then 

becomes 

 

𝐹 =  ∑
|𝑔(𝑚𝑖) − 𝑑𝑖|

𝜎𝑖

𝑁

𝑖=1

+ (𝒎 − 𝒎𝒑𝒓𝒊𝒐𝒓)′𝑪𝑚
−1(𝒎 − 𝒎𝒑𝒓𝒊𝒐𝒓) 

 

and 𝜎𝑖 are the standard deviation of the amplitudes, and 𝑪𝑚
−1 are 

the uncertainties on the prior models (again, modified by 𝛼). 

 

As another proposal for the objective function to be minimised, 

I suggest using the maximum entropy consideration for the 

balance of the χ2 distribution.  Briefly, the maximum entropy 

principle states that we wish to maximise the entropy S such 

that the model parameters agree with the testable information 

while being non-committal about the distribution of the model 

parameters themselves.  For a given set of model parameters 

(w), we define the Shannon-Jaynes maximum entropy as  

 

𝑆 = − ∑ 𝑚𝑖 ∙ log (
𝑚𝑖

𝜇𝑖
) ,

𝑀

𝑖=1

 

 

where M is the number of model parameters, and 𝜇𝑖 is the 

Lebesgue measure.  The function to be minimised then becomes 

 

𝐹 =
1

2
(𝒈(𝒎) − 𝒅𝑜𝑏𝑠)′𝑪𝐷

−1(𝒈(𝒎) − 𝒅𝑜𝑏𝑠) – 𝛼𝑆, 

 

and we interpret 𝛼 as a Lagrange multiplier used to constrain 

the minimisation of the chi-squared distribution (Sivia and 

Skilling, 2006). 

 

AN EXAMPLE 
 

Let us begin with an example of SNMR data whose in=pahse 

and quadrature amplitudes have already been found.  Figure 1 

shows such an example, whereby the 𝜔1 and 𝑇21
∗  parameters 

have been obtained to yield amplitudes (with uncertainties) that 

are most consistent with the recorded time-series data from the 

experiment (Davis, 2015).  Figure 2 shows the in-phase and 

quadrature kernels for the geophysical model at this location. 

 

Starting with the L2 minimisation function, we need to arrive at 

a determination of the prior model for the distribution of 

groundwater in the subsurface, and an estimate of how likely 

we think the prior model should be.  As stated in the abstract, 

this is the point where we determine our criteria for a 

conservative estimate of groundwater.  I propose as the prior 

model for groundwater contribution in the subsurface to be 
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Figure 1: In-phase and quadrature amplitudes for SNMR 

experiment, with data uncertainty shown with error bars 

for every pulse moment. 

 
Figure 2: In-phase (left) and quadrature (right) kernel for 

the 1D layered earth. 

 
Figure 3: Variation of 𝝌𝟐 with 𝜶 for an 𝑳𝟐 norm to the 

objective function. 

𝒎𝒑𝒓𝒊𝒐𝒓 = 𝟎.  This essentially states that, since we have no idea 

where groundwater exists, let’s say that it doesn’t exist at all in 

the subsurface.  This prior model will also be used for the L1,2 

norm and for the Lebesgue measures in the maximum entropy 

proposal (except that we take the value of the Lebesgue 

measure to be very close to zero, since the assumption of 

maximum entropy ensures positivity). 

 

By conducting the same parameter search on the regularisation 

value 𝛼, we see the following 1D groundwater models for each 

of the different objective functions.  Figures 4 and 5 show the 

inverted in-phase and quadrature amplitudes for each of the 

model regularisation techniques described here (L2, L12 and 

maximum entropy).  In each case, both the in-phase and 

quadrature components fit the measured data extremely well. 

 

 
Figure 4: Modelled in-phase and quadrature amplitudes 

compared to the measured values (black) for the L2 norm 

(light blue), L12 norm (dark blue) and the maximum 

entropy (fuchsia) regularisations. 

 

Also, we see that the inverted groundwater images are 

extremely similar.  This is a good thing, since there is general 

agreement between the inverted models.  Let us consider, for a 

moment, that our prior distribution of groundwater was 

𝒎𝒑𝒓𝒊𝒐𝒓 = 𝟏 for the entire subsurface.  The resulting 

groundwater model, for a new value of 𝛼 that minimises the L2 

norm with the extreme prior, is shown with the thin dashed line 

in Figure 5.  This shows that the data is insensitive to the last 

few layers of the groundwater model, a fact which could just 

have easily been garnered from Figure 2.  However, our 

conservative prior model ensures that we do not end up with 

this confusing situation form the beginning. 

 

The final discussion is about the posterior covariance matrix of 

the fitting function.  Figure 6 shows the posterior covariance 

matrix for the conservative prior for the L2 norm fitting 

algorithm.  We see, as expected, that the last few model 

parameters are highly variant with respect to the data, and 

invariant with respect to any other model parameters.  Looking 

along the main diagonal we see that the models become 

extremely uncertain below 60 m depth, and that there is some 

correlation between model parameters at intermediate depths. 
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Figure 5: Resulting groundwater images for the L2 norm 

(light blue, solid), the L12 norm (dark blue, dashed) and 

the maximum entropy (fuchsia) regularisation parameters. 

 

 
Figure 6: Posterior covariance matrix for the most probable 

model of the L2 norm condition.  We see that the last few 

model parameters are highly variant, but with no 

covariance, while all other parameters are less variant. 

 

CONCLUSIONS 

 

In this paper, I have demonstrated a few inversion schemes for 

groundwater quantity with respect to depth from the in-phase 

and quadrature components of an SNMR experiment.  

Specifically, I discussed the L2, and the L12 norms on the 

objective function to be minimised, and demonstrated the use 

of the maximum entropy principle for groundwater models.  

Each of these regularisation techniques yield similar 

groundwater estimates when the regularisation parameter is 

chosen so that the chi-squared distribution is approximately 

equal to N, the number of data points in the measurement.  I 

have shown that a conservative choice of prior model yields 

consistent models for each of the regularisations, and that the 

posterior covariance matrix gives an estimation of the model 

uncertainty. 
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