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INTRODUCTION 
  

Parameter estimation is made for the amplitude, phase, 

relaxation time T2
* of the FID signal from where a water 

content and a permeability image is derived, inaccurate 

parameter estimation makes MRS results unreliable, it is hence 

of great value to estimate the parameters accurately. Today, the 

main obstacle of parameter estimation is the low SNR of MRS 

records. The conventional idea of parameter estimation is 

envelop detection: linear or non-linear regression curve-fitting 

technique based on least squares estimation procedures. A SNR 

higher than 0 dB makes an accurate fitting easy to perform. 

Generally, the SNR of MRS measurements in fields is less than 

0 dB. Therefore, band-pass filtering, mean or weighted stacking, 

de-spiking and adaptive noise cancelling (ANC) (Dalgaard et al., 

2012), etc, have been proposed to improve the SNR. Selection 

of the filtering technical depends on the noise origin, so a 

variety of filters are used in conjunction when the MRS signal is 

corrupted by multiple noises, these procedures can be more or 

less efficient, but some part of non-filtering noise is always 

remaining in the records. What’s more, the above methods have 

corresponding drawbacks: band-pass filter reduces the noise 

and may distort the FID signal at the same time; stacking is 

effective but time-consuming; ANC is efficient only when the 

primary signal and the reference signal is highly linearly 

correlated and multichannel instrumentation is needed.  

 

In this paper, a new method for parameter estimation is 

proposed, which extracts parameters indirectly rather than fits a 

filtered and smooth FID, which means there is no need to make 

the FID waveform visible in time-series. The FFT can obtain the 

initial phase of FID as well as amplitude and phase of power 

line harmonics with a lower SNR, following that power line 

harmonics are constructed and subtracted from the MRS signal. 

Cross-correlation is an effective method to suppress random 

noise and spikes, an approximation formula defining the 

relationship between FID and cross-correlation signal is given. 

Duffing oscillator is sensitive to certain periodic signal but 

immune to noise, this property can be applied to detect signal 

with low SNR. Parameter estimation of FID based on the state 

transition of the driven Duffing oscillator is presented. Finally, 

the results of simulations are present. 

 

METHOD 

 
The normal form of the Duffing equation is defined as: 

3
( ) ( ) ( ) ( ) co s( )x t x t x t x t a t      

where η denotes coefficient of viscous damping, η=0.5 in this 

paper, a is the amplitude of the driving force, the dot denotes 

differentiation with respect to time. To detect weak signals with 

arbitrary frequency ω, through frequency transformation we 

can obtain: 
2 3

( ) ( ) [ ( ) ( ) co s( )]x t x t x t x t a t        

 

According to Duffing equation, the simulation model is shown 

in Fig. 1, G0=ω2, G1= ηω, G2=1/ω. The driving force or the 

signal is input into the Simulink through Simin from workspace. 
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Figure 1. Simulation model of Duffing oscillator 

 

As the driving force decreases from 1 to 0, the system will 

experience five states: (1) periodic motion, (2) chaotic motion, 

(3) period doubling bifurcation (4) homoclinic orbit, and (5) 

SUMMARY 
 

Magnetic resonance sounding (MRS) allows for a direct, 

non-invasive and in-situ determination of the water 

content of the surface, accurate parameter estimation is 

the key to a successful MRS survey. The initial phase φ of 

free induction decay (FID) as well as phase and amplitude 

of power line harmonics are obtained by Fast Fourier 

Transform (FFT), power line harmonics are subtracted 

from MRS signal. Cross-correlation is proposed to 

suppress the random noise and spikes, in order to 

reconstruct FID signal, an approximation formula is 

given. Estimation of MRS initial amplitude E0 and spin-

spin relaxation time T2
* by using a Duffing oscillator is 

investigated. Simulation results show that the proposed 

method has a relative error 1.8%, 6% and 1.7% in φ, E0 

and T2
* respectively when SNR is as low as –32 dB.  
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attractor, which are shown in Fig. 2.  
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Figure 2. Output of Duffing oscillator system when the 

amplitude of driving force decreases, a=0.8(1-t/0.12) 

 

There are four critical states among five states, but only two 

state transitions are easy to determine: from periodic motion to 

chaotic motion and from homoclinic orbit to attractor. 

Threshold values of system states transition are determined by 

the system itself, the two threshold values obtained by 

simulation are list in Tab. 1 

 

Table 1. Thresholds of phase transition of Duffing system 

State transition value 

a12(periodic motion to chaotic) 0.7156 

a45(homoclinic orbit to attractor) 0.2467 

 

When the system is in a critical state, even a tiny perturbation 

may cause a qualitative change of the system state, only certain 

periodic signal does but not do the noise (Wang et al, 1999), 

which can be illustrated in Fig. 3. 
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Figure 3. Phase plane diagrams. (a) a= 0.7156, chaotic, 

 (b) a= 0.7156, with noise, chaotic, (c) a=0.7157, periodic,  

(d) a= 0.7157, with noise, periodic. 

 

In Fig.3, the standard deviation of random noise is 0.001. When 

the system was in the critical state, the system was still in 

chaotic motion after the noise was input; while the periodic 

signal with amplitude of 0.0001 and frequency of ω was input, 

the system transformed into periodic motion, and the noise 

cannot change the state back to the chaotic motion. It shows 

that Duffing oscillator is sensitive to certain periodic signal but 

immune to noise, thus the Duffing oscillator potential to detect 

the periodic signal with damped amplitude and SNR of -20 dB, 

which is much lower than the thresholds of the traditional time 

domain detection method. 

 
Estimation algorithm 

 
The FID signal is given by the following expressions: 

0 *

2

( ) ex p ( ) co s ( ) ( ), 1, 2

ss

k k
s k E n k k N

ff T


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where f0=ω/2π is Larmor frequency, fs is sampling frequency, N 

is number of samples. The entire parameter estimation 

workflow for MRS signals is as follows: 

(1) FFT and Estimate φ; 

(2) Power line harmonics canceling 

(3) Cross-correlation 

(4) Reconstruct FID 

(5) Estimate E0 and T2
* by chaotic detection 

 

(1) As we know, FFT returns information in the form of a 

complex vector whose length is the same with numbers of 

samples, thus we can obtain magnitude and phase of sinusoids 

(power line harmonics) from the corresponding complex 

element. Although FID is not a standard sinusoid, its phase can 

still be extracted accurately, especially when sampling 

frequency is an integral multiple of Larmor frequency. The 

initial phase of FID is given as: 

0

0

im ( ( / ))
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X N f f
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(2) When the frequencies of power lines harmonics are in close 

proximity to f0 (Δf < 50Hz), the similarity between them will 

deteriorate the cross-correlation, so it is better to reduce them 

before cross-correlation. Notch filter is a good solution, but it 

may dampen the FID. We can obtain the amplitude and phase 

of the power line harmonics via FFT, and then we reconstruct 

them and subtract them from recorded signal. For example, 

Larmor frequency is 2320 Hz, noise at frequency of f1 (2300Hz) 

and f2 (2350Hz) should be subtracted, which can be written as: 
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u(k) denotes the time-series recorded in field. If Nf1/f2 is not an 

integer, spectral leakage will happen. In that case, two closest 

frequency signals should be subtracted. 

 

(3) Cross-correlation is a measure of similarity of two series as a 

function of the lag of one relative to the other, cross-correlation 

with a sinusoid can also be used to recuperate signal waveform 

corrupted by uncorrelated noise. FID signal with noise and 

reference sinusoid are calculated through cross-correlation 

function to improve SNR. 
1

0

0

2 π ( - )1
2 c o s ( ) ( ) ( ) ( )

N

n

n s

f n k
y n R k R k

N f




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2cos(2πf0t) is the reference signal. Take advantage of the 

irrelevancy of correlation between signal & noise as well as 

noise & noise, FID can be enhanced and noise can be restrained 

through cross-correlation algorithm.  

 

(4) Because the FID is not a standard sinusoids signal, cross-

correlation function R(k) is quite complicated, in order to 

compute it quickly, the approximation formula is given as: 

0

* *

2 2

0 0

2
( ) e x p ( ) ( ) e x p ( ) c o s ( ) ( )

1 02

a b s ( ( / ))

s s
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


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where ε(k) denotes error, R(k) is a damped sinusoid with 
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frequency ω. When fs=64 f0, the variance of error is illustrated 

in Fig. 4. 
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Figure 4. Variance of approximation formula with different 

relaxation time T2
* 

From Fig. 4, we can find the maximum variance is 3.3% when 

T2
*equals 1000 ms, variance is less than 2% when T2

* on an 

interval [0.03 06], the accuracy is sufficient to estimate 

parameter of FID. After cross-correlation, the FID signal is 

reconstructed by the approximation formula. 

 

By subtracting power line harmonics and cross-correlation, the 

SNR will be improved significantly. s(k) is input into the 

Duffing oscillator as driving force, by determining the time 

when the output has a state transition from periodic motion to 

chaotic motion and another state transition from homoclinic 

orbit to attractor, we can estimate the parameters of FID:  
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Because the initial amplitude of MRS signal is at nV level, λ is 

used to make FID strong enough to set the Duffing oscillator in 

the periodic state at first and in the attractor state at last. The 

estimated parameters are written as: 

*

2 4 5 1 2 1 2 4 5

*

0 1 2 2 1 2

ˆ ( ) ( ln ln )

ˆ e x p ( ) /

T t t a a
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SIMULATION RESULTS 

 
Simulations had been performed where a MRS signal was 

added by noise, the signal was written as: 

   
7

ex p (-t/0 .31 1 0 co s 2 π * 2 3 2 6 *)* π / 6s t t


    

The FID initial amplitude was 100 nV, phase was π/6, and 

relaxation time was 300 ms. Noise consists of random noise, 

spikes and power line harmonics, the noise was written as: 

   
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    





where wgn(1,N,-120) is a random noise with zero mean and 

variance 10-12, pulstran function is used to generate spikes. 

Simulation time was 500 ms and sampling frequency was 

148864 Hz. The time-series and spectrum of s(t)+n(t) is shown 

in Fig. 5 & Fig. 6. 
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Figure 5. Time-series of MRS 
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Figure 6. Spectrum of MRS 

 

As we can see, the FID was completely corrupted in the noise 

in time-series, but still can be found in spectrum even though it 

was very weak. The SNR was calculated as: 
2

2

( )
S N R 1 0 * lo g ( )

( ( ) ( ))

s t

s t n t







 

the calculated SNR of simulation signal was -32 dB. 

 

The estimated initial phase of FID, amplitude and phase of 

power line harmonics through FFT are list in Tab.2. 

 

Table 2. Estimates of initial phase of FID 

Frequency(Hz

) 
Amplitude(nV) Phase(degree) 

Phase 

Error(%) 

2300 211.5 46.29 +2.8% 

2326 45.27(a0) 29.45 -1.8% 

2350 205 60.70 +1.2% 

 

The estimated phase was 29.45° with relative error of 1.8%. 

Then the power line harmonics were subtracted, spectrum of 

filtered data is shown is Fig.7. As we can see, the power line 

harmonics are removed completely. 
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Figure 7. Spectrum of MRS after subtracting power line 

harmonics 

The filtered data was conduct cross-correlation with 2cos(ωt), 

which could be done by the xcorr function in Matlab. Through 
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cross-correlation, most of the noise will be remove to the 

beginning part of the cross-correlation series. The reconstructed 

FID is shown in Fig. 8, its fractional waveform is shown in Fig. 

9. The difference between them is quite small. 
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Figure 8. Reconstructed MRS signal and FID without noise 
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Figure 9. Fractional waveform comparison between 

reconstructed MRS (red) and FID without noise (green) 

 

Fig. 10 is the phase plane of the output, which denotes that the 

system experience periodic motion and chaotic motion.  

-2 -1 0 1 2
-2

-1

0

1

2

x

d
x/

d
t

 
Figure 10. Phase plane diagrams. 
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Figure 11. Output of Duffing oscillator system when MRS 

signal is input 

Fig. 11 shows the output of the system, from which we can 

determine the t12= 94.34 ms, t45= 408.1ms. Finally, the 

estimated parameters of MRS is E0=93.9 nV, T2
*=295 ms, the 

relative error is 6% and 1.7% respectively. 

 

CONCLUSIONS 
 

We have presented a new method to estimate the parameters of 

MRS signal with Duffing oscillator. First, we introduce the 

fundamental principle of Duffing oscillator detection, which is 

capable of detecting damped periodic signal with low SNR. 

Though FFT the initial phase of FID is estimated meanwhile is 

parameters of power line harmonics are obtained. With the 

amplitude and phase of power line harmonics, we can subtract 

them from MRS signal. Cross-correlation is used to suppress 

the spikes and random noise, after which a smooth FID is 

reconstructed, the error of approximation formula is less than 

3.3%. Finally, T2
* and E0 are estimated by determining the time 

when the state of Duffing oscillator transforms. The parameter 

estimation has a relative error 1.8%, 6% and 1.7% in φ, E0 and 

T2
* respectively when the SNR is as low as -32 dB. Thus the 

SNR threshold of parameter estimation of the MRS signal is 

reduced significantly. Although this method is powerless when 

the noise is at the same frequency with FID (maybe reference 

noise cancelling is the only choice), it is a potential solution to 

allow the application of MRS in noisy areas and improve the 

investigation depth & resolution. 
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