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SUMMARY

One of the most important tasks in magnetic resomah
sounding (MRS) is the noise removal prior to thenalg
extraction process. In this work a new time-domgin
method based a non-linear adaptive decomposition
technique called complete ensemble empirical mqde
decomposition (CEEMD) in conjunction with a statiati
optimization process for enhancing the signal-ts@o
ratio of the MRS signal is developed. The filterin
scheme starts with applying the CEEMD method [to
decompose the noisy MRS signal into a finite nundfer
intrinsic mode functions (IMFs). Afterwards, a tsheld
region based on de-trended fluctuation analysisA)DE
defined to identify the noisy IMFs, and then thenuise
IMFs are used to recover the partially de-noisgdai In
the second stage, we applied a statistical metheddon
the variance criterion to the signal derived frdma initial
phase to remove the remaining noise. To demongtrate
functionality of the proposed strategy, the metheas
evaluated on an added-noise synthetic MRS signdl, pn
on field data. The results show that the propoged
procedure allows us to improve the signal to no#®
significantly, and consequently, extract the sigrnal
parameters from noisy SNMR data efficiently
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INTRODUCTION

The magnetic resonance sounding (MRS) techniquenisna
invasive hydro-geophysical tool, which as opposedther
geophysical approaches provides a direct measureafiater
content with depth, but also indirectly the meamepsize of
the aquifer (Hertrich, 2008). However, one of tha&jon
limitations of the MRS method is electromagnetic
interferences. The MRS signal usually varies betweearto a
couple of thousand nV and the ambient noise isdfigher.

Noise can be natural and caused by magnetic storms,

thunderstorms etc., or man-made, generated by pbmes,
cars, electrical fences etc. Industrial noise iss@ered to be a
superposition of harmonics of the industrial freguye 50 or
60 Hz. The MRS signal is strongly affected by noésel
different procedures can be employed to eliminatatdeast
decrease the influence of noise during acquisidod data
processing (Legchenko, 2007). Despite the sigmificdata
processing and hardware developments (see e.gg étaal.,
2011; Walsh et al., 2011; Falahsafari et al., 200ijler-
Petke and Costabel, 2014; Ghanati et al., 2014daadl et al.,
2014; Ghanati and Fallahsafari, 2015) since theeidof
SNMR, the application at industrial and urban regiaa
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greatly impossible. Typical signal amplitudes of MRS
measurements are very weak and cannot be readilgased
relative to the ambient noise level. Hence, it sseatial to
apply robust data processing approaches to thg aoid very
weak MRS signals. The aim of this study is to tadkle
application of a recent non-linear data analysisthmd,
complete ensemble empirical mode decomposition (CEEM
with the technique of statistical optimization pees (Shahi et
al. 2011) to retrieve the MRS signals. Moreover trdeded
fluctuation analysis (Peng et al. 1994) is used tle
decomposition modes resulting from applying CEEMDhe
signal to know whether a specific IMF contains ubef
information or primarily noise.

METHOD AND RESULTS

CEEMD algorithm

The EMD method self-adaptively decomposes a datesse
into a finite set of intrinsic mode functions (IMF®rm the
highest and the lowest frequencies. Any IMFs shaaltisfy
two specifications: 1) the number of maxima andimaand
the number of zero crossings must either equaiffar dby one
at most; 2) at any given data, the mean value ®ftivelope
defined by the local maxima and the envelope byldioal
minima should be zero. The IMFs are extracted basedn
iterative process, called sifting. After extractiad IMFs,
MRS signalE(t) can be expressed as

M
E(t) = z IMF, (t) + Ry (1), (1)

k=1

WhereRy is the final residuelMFy(t) is kth IMF andM is

the number of extracted IMFs.

For complicated signals, the major problem of thikICE
algorithm is the mode mixing caused by the inteamity of
signals, which renders the EMD unstable (Wu and rigua
2009). To relieve this drawback, ensemble empirical
decomposition was suggested by Wu and Huang (2009).

The prime influence of decomposing through EEMDOhat
the added Gaussian white noises cancel each athilee ffinal
mean of the corresponding IMFs. This means thatlties
stay within the natural dyadic filter widows, anthus
appreciably lessen the chance of mode mixing aedepve
the dyadic property. While EEMD provides great
improvement over the EMD performance, there aréatiens
from IMFs because the IMFs in EEMD are mean value.
Moreover, the EEMD algorithm bears the noise inrésdue
while reconstructing the signal. A variation of tEEMD
algorithm, called complete ensemble empirical mode
decomposition (CEEMD) was proposed by Torres et al.
(2011) by which the original signal is fully reconsted.
Same as EEMD, the decomposition with the CEEMD
algorithm is a noise-assisted method. A completeriation

of the concepts of IMFs and CEEMD is in Torres e(2011)
and Ghanati et al. (2014). Decomposition of a digrsing
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CEEMD method leads to n-empirical modes and a rakido
that the higher frequencies are ordinarily foundha initial
IMFs and lower frequencies in subsequent IMFs. The
components with the higher frequencies carry alutteergy
and contain noise.

De-trended Fluctuation Analysis (DFA) Criterion

The most critical point is to realize whether &dfic IMF
contains useful information or primarily noise.slould be
noted that the noise appears in all IMFs, and ithdtard to
eliminate it by discarding just one specific IMF this
section, a novel approach based on the de-trerdetidtion
analysis (DFA) algorithm is presented for identifyi noisy
IMFs. A brief description of this technique is peated as
follows:

For a given MRS signak(t;), t; = iAt, i =1,...,K, with
sampling periodit.

1- Compute the time series mdar (1/K) IX, E(ty).
2- Find integrated time series after removing therageE as
Y(t) = Eio[Et - E)], 1<i<K )

3- Divide the integrated time seriggt;) into N windows of
lengthn.

4- For each window, Estimate local tretw(t;) by simply
fitting a linear line.

5- Calculate the root-mean-square fluctuatidgn), by
subtractingp, (t;) from the integrated serigg(t;) as

®)

F) =/ I [WE) — ¢, (t))% i=1,..K.

6- Repeat steps 3-5, varying the window size betwaen
minimum length of 5 samples and a maximum lengti &f
with K being the number of time series samples.

7- Draw a log-log plot of the root-mean-square tihation
versus the corresponding window lengths resulting ai
straight line with the slope ab, where® is called scaling
exponent. The scaling exponedt can be regarded as an
indicator of roughness. The larger valuedgfthe smoother is
signal. In other words, small value of it signifiesre rapid
fluctuations (Mert and Akan 2014). Therefore, adauoy to
the above assumption, in this study, CEEMD basedaiting
algorithm is implemented base on the use of DFpes|e as

a threshold in order to distinguish the noisy IMFs.
Consequently, a threshold region is definedras ® + 0.25
where the region is defined based on the valuéseo§caling
exponent corresponding to white Gaussian nadisg),(pink
noise (.0) and Brownian noisel(5). Note that the SNMR
signals are primarily contaminated with harmonicd an
stochastic noises (e.g., white Gaussian noise ailly s
events). At the first stage of the proposed metlfioel,
CEEMD), we aim to mitigate white Gaussian noise lBans
of excluding the IMFs withb in the threshold region. Hence,
based on the above description, the threshold megids
defined withd = 0.5.

Statistical Optimization Process

The next algorithm implements SNMR signals de-ngisma
statistical framework under an optimization probleralled
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variance criterion (Shahi et al., 2011) We inifiaiixpress a
brief review on MRS basics. MRS energizes the profans
groundwater by transmitting a resonance electroetagn
pulse with the Larmor frequency. The energized @rstthen

generate a secondary magnetic resonance signah whic
given by

@)

WherekE, is the initial maximum voltagdl; is the transverse
relaxation timefj, is the Larmor frequency aréilis the phase
shift between the returned signal and the excitatiarrent.

E(t,q) = Eo(q)exp (—t/T;(q))cos 2nfit +0(q))

The detection of the signal is realized by the byowrous
detection technique. Mathematically, this procedoam be
expressed as a multiplication with the complex t@rif™frt
(Levitt, 1997), which gives

t

Enuitiptiea(t) = Eg exp (— _) lexp(j2rfr + 2mf) t +jOy) +

b

exp(j(2nfg — 2mf ) t — jOo)], (3
after applying the low-pass filter, we get
EDetectian(t) = EO exp (_ Tiz*) exp(j(erfot - QO)) (4)

The equation 4 indicates the ideal form of the MRBal. But
generally, this is not true and MRS signal is, irctfa
contaminated with noise. Thus, the real noisy MRfaali can
be expressed as follows.

Epevemtion(t) = Eo exp (— 1z) [exp (j 2mfot — 00))] +
Yk Prexp (j2mfit + jOk) + ecompiex (L),
(5)

The second term of the above equation is relatedhéo
harmonic noise part ane,mpiex(t) denotes the stochastic
noise part containing the background noise, anklysprents.
Spiky signals appear randomly, so that these reitares are
considered as parts ofcomplex(t) (Strehl, 2006). The main
objective is to remove the noise from equation & access to
equation 4. Noise cancellation from the MRS sigegjuires
perception about the noise parameters and the Elgahl
features. The mean or the area under the curve éxcusive
characteristic of these two components. The mearnwof
signals, i.e., the ideal sighal and noise sigrsakqdual to the
summation of the mean of each one. On the othed, Hae
mean of the real signal is equal to the summatfchemean
values of the ideal signal and noise. Mathematicdfiis can
be defined as

(6)

A = AS + AN

Where A denotes the area under the curve of the real Isigna
Ag is the area of the ideal signal of equation 5 ARds the
noise area. As the mean value of the noise (carga under
the curve) is approximately zero ( Strehl, 2006al8tet al,
2011), therefore the signal mean will not be chdngéer
being noisy. considering the mentioned assumptienget
Eo = A/(1— exp (—t/T;)T; )
Whereas, NUMIS equipment records the noise autcaibti
prior to the MRS measurement thus the parametertheof
environment noise can be measured. Variance isobsech
parameters which fully identified before the orgirsignal
record. Thus, comparison of the variance of thenaséd and
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recorded noises makes possible to discern thesmaadf the
values ofE, as well asT;. In order to achieve correg, and

T;, an optimization problem based on the variancethef
estimated and recorded noises is defined. The leddcl
variance is compared with the variance of the medmoise

in order to realize th&, variations, then the estimation and
alteration ofE, are continued until the difference between the
variance of the estimated noise and the variancehef
recorded noise will be approached to approximatedyo.
WhenkE, is flawlessly approximated, we will be ensuredt tha
the value ofl; is accurate as well as the estimated ideal signal
is considerably noiseless.

Numerical results

We first generate an exponentially decaying sigvith initial
amplitudeE, = 140 nV and a decay tim&, = 190 ms. Then,
three different noise levels which contain deterstia (i.e.,
harmonic noise) and stochastic (i.e., uncorrelaBadissian
distributed noise and spiky events) noises, withPRSN3.9,
5.07 and 9.6 dB, were added to the synthetic signédl the
three methods CEEMD-DFA, variance criterion, and the
combined CEEMD-DFA-variance criterion methods were
used for de-noising. Figure 1 shows the simulatt&tMB
signal (SNR= 5.07 dB) contaminated with harmonicskysp
events and Gaussian noise with standard deviatierB0 nV

and mean valuem = 0. The noise cancelation is carried out in
two stages here: the CEEMD method is just implenteiate
the first stage, at the second stage the variariterien is
implemented as well. Figure 2 shows the IMFs olegifrom

the decomposition of the synthetic SNMR signal. Aldte
DFA scores of the corresponding IMFs are illusttaia
Figure 3. As described in the previous sections, ItiiFs
which have lower fluctuation value than the threshold are
identified as noisy components, and consequently, reot
included into reconstruction. Thus the partial sign
reconstruction is the sum of the IMFs from 4 to 8&ich
results in the de-noised signal shown in Figurdt £an be
seen that the harmonic and Gaussian noises assvelitliers
have been considerably removed through the proposed
CEEMD-DFA based de-noising algorithm. In additiohg t
signal-to-noise ratio increases from 5.07 dB (relate the
noisy signal) to 21.14 dB. Afterwards, the signattained
from the previous stage enters the variance aiteio cancel
the remaining noise in the signal and estimatectireerning
parameters. So, by implementing the second sthgesignal-
to-noise ratio increases to 28 dB and the SNMR signal
parameterg, andT, are estimated 144V and 200ms with
mean squared error (MSE) 6.68 while the value ofEMS
obtained by using merely use of variance criteli®n6.27
(see Table 1). Figure 5 displays the outcome ofyapp the
CEEMD-DFA filtering scheme and the proposed combined
method to the simulated MRS signal (5.07 dB).

Table 1. Estimated parametersand SNR and M SE
performance of variance criterion and joint application
CEEMD-DFA and variance criterion.

Signal (SNR=5.07 dB)

Evaluation
Parameters

Est. Eo ES. TS
o) SNR (dB)

™) MSE

Variance

Criterion 1431

206 24 16.27

Integration of
CEEMD-DFA
with Variance
Criterion

141 200 28 6.69
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CONCLUSIONS

We presented a novel method for reducing stochastit
harmonic noises from SNMR signals, integrating thee d
trended fluctuation analysis (DFA) thresholded clatg
ensemble empirical mode decomposition (CEEMD) with
statistical optimization process through variané&on. We
initially applied a recent developed procedureezhlDFA to
the decomposition modes resulting from the CEEMD
algorithm in order to distinguish the noise compureand
noise free signal components. Based on a predetfimesghold
region, the IMF(s) having lower DFA score (scalexgponent)
than the threshold are excluded in the reconstmigthase to
obtain partially de-noised version of the signalbSequently,
the variance criterion is applied to the obtainigda from the
previous stage to remove the remaining noise. €balts of
numerical experiments showed quite reasonable imeafoce

of the proposed combined method compared to memssyof
CEEMD or variance criterion in noise cancellatioattfinally
leads to more accurate and reliable recovery of siigaal
parameters.
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Figure 1. Noise free (red) and Noise-added SNMR signal
(black) with SNR = 5.07 dB.

50)
Of
50

.'m.'fﬁ\w‘,~JJ|"w‘M,‘ﬁV.VN‘\|Mu\"hﬂ'/rﬂ'ﬁ"‘\‘m\m‘¢\ﬁ ‘f“.m ww".www.r B ﬂ

IMF8 IMF7 |fre IMF5 IMF4 IMF3 IMF2 IMF1

0.45 025 03 0.35

Time [s]
Figure 2. lllustration of resulting IMFs after Complete
Ensemble Empirical Mode Decomposition of the noise-
added SNMR signal shown in fig 1.
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Detrended Fluctuation Analysis
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Figure 3. DFA scores (scaling exponent) of the IMFs
resulting from applying CEEMD to the simulated signal
shown in Fig. 2.
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Figure 4. Noise-added SNMR signal (black) with SNR =
5.07 dB and de-noised signal from CEEM D-DFA (blue)
with SNR = 21.14 dB.
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Figure 5. Noise free signal, Noise-added SNMR signal
(SNR = 5.07 dB), de-noised signal from CEEMD-DFA
(SNR = 21.14 dB) and estimated signal using CEEMD-
DFA and variancecriterion (SNR = 28 dB) with T; = 200
and Ey = 141.



