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SUMMARY

A major drawback of applying surface-NMR to hydro-
geophysical investigations is high vulnerability 1
electromagnetic interferences that severely affibet
signal quality of surface-NMR measurements. In this
paper, we describe an application of a powerful de-
noising method based on singular spectrum analysis
(SSA) technique. The aim of SSA is to decompose the
original time series into a sum of small numbers |of
independent and interpretable components suctoagysl
varying trend, oscillatory components, and noise
components. The time series is decomposed intce npis
free original time series components and nolse
components at the first stage, at the second stegyde-
noised time series is reconstructed by using theerfcee
components extracted from the initial section. Stymal
retrieval process through the SSA algorithm strym:IE

[=]

depends upon two parameters: the window lengtinef
embedding operation and number of needed singular
values. To evaluate the performance of the propoged
strategy, the method is tested on synthetic sigadted
to noise-only recordings obtained from surface-NMR
field survey. Our results show that the proposed
algorithm can enhance the signal to noise ratio
significantly, and gives an improvement in estimmatof
the surface-NMR signal parameters.

Key words: Singular Spectrum analysis; Surface Nuclear
Magnetic Resonance; Noise Reduction; Parameter
Estimation.

INTRODUCTION

The surface-NMR procedure is a way to quantitatively
determine water presence in the subsurface, whih i
impossible with other geophysical methods availalgay
(Hertrich, 2005). In regard to surface-NMR measumsie
environmental and cultural noise is a serious abstéo
achieve reliable results, and limits the widesprese of
surface-NMR instruments in hydro-geophysical ingzgions
(Walsh, 2008). Beside the background noise, i.edaanand
Gaussian distributed white noise, surface-NMR uguall
contaminated by different noise sources includiowgr line
harmonics and electrical discharges from both mhtand
artificial sources bringing about spiky events (@zalrd et al.,
2012; Muller-Petke and Costabel, 2014). Technicafythe
surface-NMR measurements, typical signal amplituees
very weak and cannot be easily increased relativehe
ambient noise level, hence, it would be quite diffi to reach

a reliable result. ~ Consequently, robust andcéffe noise
mitigation approaches are required to acquire theakw
surface-NMR signals. Recently, multi-channel surfsldé4R
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systems offer the possibility to measure the tirages as
broad-band data records at 50 kHz sampling rateadsof
providing merely envelopes of the records. Suchadrband
measurements allow us to implement advanced post-
processing techniques for noise reduction. Caserhkaston
suppressing the influence of noise during acqoisiind data
processing can be found in literature (Trushkiralet1994;
Legchenko and Valla, 2002; Plata and Rubio, 2002iskya
2008; Strehl, 2006; Dalgaard et al., 2012; Lardeal.e 2013;
Muller-Petke and Costabel, 2014; Ghanati et al., 4201
Dalgaard et al., 2014). All approaches have dematest
useful functionality to further enhancement of #ignal to
noise ration in surface-NMR measurements. But redtied
the surface-NMR signal, due to high vulnerability rioise,
complex, non-stationary and non-linear nature ofsitstill a
challenging task. The general objective of thisdgtus to
address the application of singular spectrum arsga(BSA) to
mitigate harmonic and stochastic (i.e. uncorrelaBzdissian
distributed noise and spiky events) noises fronfiaserNMR
signal. After noise removal, signal extraction isrfprmed
using the digital quadrature detection with additibphase
correction (Muller-petke et al., 2011; Neyer, 2Q10he
digital quadrature detection turned out to be Emssitive to
noise than other methods (e.g. Hilbert transformmatcross-
correlation filter, quadrature detection without aph
correction) (Neyer, 2010). Subsequently, we comside
regularized Levenberg—Marquardt method for estingathe
underlying surface-NMR signal parameters such asalini
amplitude V,, decay timeT,, frequencyf,, and phasep.
Whereas an adequate stacking rate of the singl@deaan
decrease the power-line interferences due to ralydom
variation of the phases of the harmonics, so thatintensity
at the harmonic frequencies is reduced during taekig
process, the SSA based de-noising is applied onnthige
added synthetic Surface-NMR signals after the stackihe
numerical experiments we present show that the qmexp
method can enhance the signal to noise ratio with a
accompanying enhancement in recovery of the signal
parameters.

METHOD AND RESULTS
Singular spectrum analysisalgorithm

The basic principles of SSA were first emerged ikeRet al.
(1984). But what makes its wide applicability is thon-
parametric and model-free nature that enablesipoaers to
deploy it without a prior knowledge of any undenlyi
structure (Chu et al., 2014). The algorithm of SSAsists of
two complementary stages: decomposition and regangn
and both the stages include two distinct stepthérfirst stage
the observed signal (often called time series)esothposed
and in the second stage the original source sigeal
reconstructed and used for further analysis. Afloiéscription
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of the SSA scheme is presented in the followingr fou
systematic steps.

Let S = (sy,...,Sy) Of length N denote an observed finite
realization of a stochastic process. We assumeSthat been
corrupted by noise.

First stage: Decomposition

1st step: Embedding: To implement the embedding operation
we map the one-dimensional time series or sighatto a
sequence of lagged vectors of si2e by forming®? = N —

W +1. Define P-lagged vectors hy,..,hp by h;=
[si) e, Sigw—1], i=1,..,2 and the associated trajectory
matrix of the signa$ by

S1 Sz Sp
S2 53 Sp+1
H= [hl' hZ' ey hN—W+1] = : H (1)
Sw Sw+1 SN

This process of embedding into H, fundamental in time
series analysis, creates a handle for manipulatizugk
reduction (Chu et al., 2014).

2nd step: Singular value decomposition (SVD): in the SVD
step, we calculate the SVD of the trajectory mataixd
represent it as a sum of rank-one bi-orthogonainetfgary
matrixes. The covariance matrix is calculatéd= HHT, and
its decomposition inton eigenvaluesy,, ...,9,, descending
order of magnitude (9; ==Y, =0) and the
corresponding orthogonal eigenvectdrs= (uq, uy, ..., Up) IS
obtained. Set/ = max{i; such that 9; > 0} = rank(H) (or
J =min {W,P}) andV; = HT% ,i=1,..,J. The SVD of
19i2
the Hankel maripf can be written as follows:

] ]
H= Z H = ZﬁuiViT
i=1 i=1

Where the matriced]; have rank 1; such matrices are
sometimes called elementary matrices. The collectio
(/9:u;ViT) will be called i-th eigentriple of the matri, \/9;
(i=1,..,]) are the singular values of the matHxIt should

be noted that the eigenvectors &f arise from the
autocorrelation matribHHT, the components that present the
most coherency in the data will be weighted by slagvalues
with higher values. This way, the decomposition thé
trajectory matrix in its singular spectrum is vargeful to
identify trends in the data. Also, given that thignal in the
time series is correlated between time-lagged wirsdidt will

be represented by the largest singular values. ,T$iogular
values with less weight can be considered as noise
components, making possible the use of this toohadise
suppression of time series (Oropeza and Sacchi,)201

)

Second stage: Reconstruction

1st step: Grouping: after obtaining the elementary matrixes in
the previous stage, the grouping operation divithesset of
indices {1,2,...,]} into n disjoint subsetsl,...,I,. Let

I ={i,.., 14}, for d <W, be a group of indices, ..., iq.
Then, the matriH; corresponding to the groups defined as
H; = Hy; + -+ Hjy. These matrixes are calculated for
I =1, .., I, and the expansion (1) leads to the decomposition

H = H11 + ...+H1n (3)
The process of choosing the set is called the Eigple
grouping.
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2st step: Diagonal averaging: The purpose of diagonal
averaging or Hankelization is to transform a mataxthe
form of a Hankel matrix, which can be subsequettiyverted
to a time series lengtN. For a typicalW x P matrix H with
elements h;;, 1<i<W, 1<j<P, we set W
min (W, P), P* =max (W,P) and N=P+W —-1. By
making the diagonal averaging we transfer the mafriinto
the serieg;, ..., gy through the following formula:

For 1<sk<sw -1

(
! m=1
1 %
gk={ w Zg(m,k—m+1) For W*<k<P* 4)
m=1
| 7 o
— z gmk—m+1) For P*+1<k<N
[N le+1 m=k-P*+1

The whole procedure of the SSA scheme strongly ritépe
upon two basic parameters that must be assignedosen by
the practitioner, namely, (i) the window length e
embedding and (ii) the number of singular valuem@aleling
parameter). Certainly, the values chosendrand R will
interact one with another so as to effect perforceaand it is
vital to ensure that the techniques employed faigasnent
and choice of the two parameters vyield appropriate
separability between signal and noise componentisedisas
minimize reconstruction error. Standard practic&8A is to
use a value for the window length large enoughnsuee that
the signal and noise components are strongly skghra
Several attempts have been made in the mathemetinéxt
to select the appropriate values of parame®randR. To
obtain the optimal values ofV and R, we consider the
separability between signal and noise componenishwi an
indispensable concept in studying SSA propertibg degree
of approximate separability between two sigr§l8 ands®

is quantified by the so-called weighted-correlati@r W-
correlation) criterion which is defined as follows:

N WNg(1)g(2)
= WSS

i = - - (5)
[T W sy B, W (52

WhereW”™ = min {j N —j+ 1} and2 < W < N — 1.

If the absolute value of the W-correlations is dntalen the
corresponding signals are almost W-orthogonal, But, is
large, then the two signals are far from being \tWagonal
and are therefore weakly separable. In other wdldsyalue
of the W-correlations indicates that how the retamsed
signal has been separated from the noise component.

Numerical results

In this section, to demonstrate the functionality tbe
proposed algorithms, numerical experiments from
modeling of a synthetic signal added to real no&smrdings
are tested. The quality of the reconstructions éasared in
terms of the signal to noise ratio (SNR) in decil(eB). In
addition, the mean absolute percentage error (MARE)
quoted in this paper for evaluating estimation aacwy In
brief, the lower the MAPE value, the better thef@@nance.

N
1 E (s(t) —8(t;))
MAPE—N. 1 |100 X —— (6)

the

s(t;) '
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Where §(t;) is the reconstructed signal (the processed and
stacked signal) and(t;) is the original signal. 35 recorded
noises received by the Numis-Poly system are usée fully
ensured of the noise simulation instead of prodyaeirtificial
noises. The synthetic surface-NMR signal wWith= 200 nV,
T; = 250 ms, Fy = 2138 Hz and¢ = 1.03 rad is simulated
through Eq. (7), and then the noise-only recodesadded to
it.

V(t) = Vyexp (—t/T;)cos (2mFot + ¢) @)
In Eq. (7), the initial amplitude and decay timetbé FID
signal is denoted by, and T;, the phase of the retrieved
signal enters a$, F,, indicates the Larmor frequency.
It is well-known that by increasing the stack sizether
reduction of the coherence noise is provided. Eheaused by
the fact, that the phases of the power-line harosorandomly
changed in every single stack, so that the enetgyha&
harmonic frequencies is diminished during the stagk
process (Strehl, 2006). Hence, the proposed déngois
algorithm is implemented on the stacked signal. the
corresponding surface-NMR signal is generated ushey
stacking of the synthetic MRS signal superimposedreai
MRS noise records, as shown in Figure 1 (grey). Knguhe
significance of the appropriate choice1f andR from the
previous section, we use the W-correlation critetio obtain
the optimal values of the two parameters, leadirengially to
better reconstruction of the surface-NMR signal.@ding to
the results derived from the W-correlation critarignot
shown here), we can conclude that choosing windavgth
equal to 5223 an® equal to 2 gives best separation between
signal and noise components. On the other hand,VWhe
correlation value in terms of a fixed value ®ffor large and
small values ofW is far away from the minimum W-
correlation. Here, we use as signal the reconsgtiuseries
containing optimalR components and select the remairnihg
which does not belong to the reconstruction, asenoihe
result of SSA-based filtering with the optimum weduof
parameterdV andR is presented in Figure 1 (black). ). In this
Figure it is possible to observe the charactesstita MRS
signal. Figure 2 displays the power spectrum cpoeding to
a single, unfiltered noise-only record with synibesignal
added (black), unfiltered and stacked signal (bhse)well as
filtered and stacked signal (grey). It can be s#wt the
power-line harmonics have been considerably removed
through the proposed SSA based de-noising algoritfime
peak at the Larmor frequency is left undisturbedadidition,
the signal-to-noise ratio increases from 0.36 dBa{gee to the
noisy FID signal) to 19.7 dB. When comparing thecspen
of the single, unprocessed record and the correspgn
spectrum of the stacked and unprocessed signahoteethat
the stacking operation has led to a partly redacté the
power-line harmonics. After the application of tBBA based
filtering, the next step is the envelope detectad fitting the
envelope to the mono-exponential decay. Here, fig@atl
quadrature detection with phase correction is useelxtract
the MRS signal envelope. Subsequently, in orderstonate
the signal parameters, a non-linear optimizatioobjam
based on the regularized Levenberg—Marquardt method
(Chavent, 2009) must be used. The fitting yieldsrdiaxation
time T, and the initial value after the end of the exdat
signal. Representative results from the proposechadeto
retrieve the MRS signal parameters are reportedainleT 1.
For comparison the MRS signal has been also recdverthe
case where no processing has been carried outcamsee
that the value of MAPE obtained by using the prepos
algorithm is lower than that of merely use of pstacking
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(plain averaging over the signal records). MorepweFigures
3(a)-(b), the signal envelope (dark line) and expial decay
curve (red line) defined by the fit-paramet¥sandT, to the
signal envelope associated to the unfiltered dterdid signal
are illustrated.

CONCLUSIONS

In this paper, we suggested an efficient post-msiog
workflow based on the singular spectrum analysis fo
attenuating stochastic and harmonic noises frofasesNMR
measurements which leads to an increase in theamcof
the parameter estimation. The SSA algorithm costdimo
stages referred to as Decomposition and Reconstnjcti
whilst the two choices are known as the window 1eAY and
the number of singular valueR. Each of the two stages
includes two separate steps known as Embeddingatiqer
Singular Value Decomposition (SVD) and, groupingd an
Diagonal averaging. We considered the conceptpdrsdility
between the signal and noise components througlsureaf
weighted-correlation criterion to determine theimpd value

of parameterd¥ andR. The digital quadrature detection with
phase correction was used to extract the envelbpieecID
signal. Subsequently, we applied a non-linear dpétion
problem based on the regularized Levenberg—Margquard
method to the mono-exponential decay curve to eséirthe
signal parameters. The results of numerical exparmfrom
applying the proposed filtering approach to thé negse-only
measurements and synthetic signal added to nolge-on
records confirmed relatively high performance & gioposed
scheme in suppression of electromagnetic interéa®rthat
allows more accurate retrieval of the model paranset
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—Denoised FID Signal Via SSA
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Figure 1. The unprocessed synthetic MRS curve (stack of
32 records) is grey and the processed signal using the SSA
algorithm is black.
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Figure 2. Representation of the power spectral density
corresponding to a single, unfilterled noise-only record
with synthetic signal added (black), unfilterd and stacked
signal (blue) and filterd and stacked signal (grey). The
Larmor frequency isindicated in thefigure by grey line.
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Figure 3. FID curves before (a) and after (b) the
application of the SSA-based de-noising algorithm.
Oscillating gray line, simulated time series; black line,
signal envelope; red line, exponential decay curve defined
by the fit-parameters Vo and T5; dot, initial amplitude of
the estimated signal.

. Estimated
Modée Paffr%rgtztresdvia Parametersvia
Parameters Pure Staking SSA-Based

Filtering

Vo 187.1 197.82
T, 288.8 258.9
fo 2237.02 2237.9
@ 0.92 0.993
MAPE? [%] 8.89 0.71

a
MAPE: Mean Absolute Percentage Error

Table 1. Estimated value of the four parameters using
pure stacking and SSA-based filtering method on a
synthetic MRS signal corrupted by noise-only recordings.

4



