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INTRODUCTION 

  
The surface-NMR procedure is a way to quantitatively 
determine water presence in the subsurface, which is 
impossible with other geophysical methods available today 
(Hertrich, 2005). In regard to surface-NMR measurements, 
environmental and cultural noise is a serious obstacle to 
achieve reliable results, and limits the widespread use of 
surface-NMR instruments in hydro-geophysical investigations 
(Walsh, 2008). Beside the background noise, i.e. random and 
Gaussian distributed white noise, surface-NMR usually 
contaminated by different noise sources including power line 
harmonics and electrical discharges from both natural and 
artificial sources bringing about spiky events (Dalgaard et al., 
2012; Muller-Petke and Costabel, 2014). Technically, in the 
surface-NMR measurements, typical signal amplitudes are 
very weak and cannot be easily increased relative to the 
ambient noise level, hence, it would be quite difficult to reach 
a reliable result.    Consequently, robust and effective noise 
mitigation approaches are required to acquire the weak 
surface-NMR signals. Recently, multi-channel surface-NMR 

systems offer the possibility to measure the time series as 
broad-band data records at 50 kHz sampling rate instead of 
providing merely envelopes of the records. Such broad band 
measurements allow us to implement advanced post-
processing techniques for noise reduction. Case histories on 
suppressing the influence of noise during acquisition and data 
processing can be found in literature (Trushkin et al. 1994; 
Legchenko and Valla, 2002; Plata and Rubio, 2002; Walsh, 
2008; Strehl, 2006; Dalgaard et al., 2012; Larsen et al., 2013; 
Muller-Petke and Costabel, 2014; Ghanati et al., 2014; 
Dalgaard et al., 2014). All approaches have demonstrated 
useful functionality to further enhancement of the signal to 
noise ration in surface-NMR measurements. But retrieval of 
the surface-NMR signal, due to high vulnerability to noise, 
complex, non-stationary and non-linear nature of it, is still a 
challenging task. The general objective of this study is to 
address the application of singular spectrum analysis (SSA) to 
mitigate harmonic and stochastic (i.e. uncorrelated Gaussian 
distributed noise and spiky events) noises from surface-NMR 
signal. After noise removal, signal extraction is performed 
using the digital quadrature detection with additional phase 
correction (Muller-petke et al., 2011; Neyer, 2010). The 
digital quadrature detection turned out to be less sensitive to 
noise than other methods (e.g. Hilbert transformation, cross-
correlation filter, quadrature detection without phase 
correction) (Neyer, 2010). Subsequently, we consider a 
regularized Levenberg–Marquardt method for estimating the 
underlying surface-NMR signal parameters such as initial 
amplitude V�, decay time T�∗, frequency f�, and phase φ. 
Whereas an adequate stacking rate of the single records can 
decrease the power-line interferences due to randomly 
variation of the phases of the harmonics, so that the intensity 
at the harmonic frequencies is reduced during the stacking 
process, the SSA based de-noising is applied on the noise 
added synthetic Surface-NMR signals after the stacking. The 
numerical experiments we present show that the proposed 
method can enhance the signal to noise ratio with an 
accompanying enhancement in recovery of the signal 
parameters.   
 

METHOD AND RESULTS 
 

Singular spectrum analysis algorithm 

The basic principles of SSA were first emerged in Pike et al. 
(1984).  But what makes its wide applicability is the non-
parametric and model-free nature that enables practitioners to 
deploy it without a prior knowledge of any underlying 
structure (Chu et al., 2014). The algorithm of SSA consists of 
two complementary stages: decomposition and reconstruction 
and both the stages include two distinct steps. In the first stage 
the observed signal (often called time series) is decomposed 
and in the second stage the original source signal is 
reconstructed and used for further analysis. A brief description 
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geophysical investigations is high vulnerability to 
electromagnetic interferences that severely affect the 
signal quality of surface-NMR measurements. In this 
paper, we describe an application of a powerful de-
noising method based on singular spectrum analysis 
(SSA) technique. The aim of SSA is to decompose the 
original time series into a sum of small numbers of 
independent and interpretable components such as slowly 
varying trend, oscillatory components, and noise 
components. The time series is decomposed into noise 
free original time series components and noise 
components at the first stage, at the second stage the de-
noised time series is reconstructed by using the noise free 
components extracted from the initial section. The signal 
retrieval process through the SSA algorithm strongly 
depends upon two parameters: the window length of the 
embedding operation and number of needed singular 
values. To evaluate the performance of the proposed 
strategy, the method is tested on synthetic signals added 
to noise-only recordings obtained from surface-NMR 
field survey. Our results show that the proposed 
algorithm can enhance the signal to noise ratio 
significantly, and gives an improvement in estimation of 
the surface-NMR signal parameters. 
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of the SSA scheme is presented in the following four 
systematic steps. 
Let S = (��, … , ��) of length � denote an observed finite 
realization of a stochastic process. We assume that S has been 
corrupted by noise. 
 
First stage: Decomposition 
 
1st step: Embedding: To implement the embedding operation 
we map the one-dimensional time series or signal S into a 
sequence of lagged vectors of size � by forming � = � −� + 1. Define �-lagged vectors ℎ�, … , ℎ� by ℎ� =��� , … , �������, � = 1, … , � and the associated trajectory 
matrix of the signal S by  

� = �ℎ�, ℎ�, … , ℎ������ = � �� �� … ���� � … ����⋮�� ⋮���� ⋱… ⋮��
# (1) 

 
This process of embedding ℎ into �, fundamental in time 
series analysis, creates a handle for manipulating rank 
reduction (Chu et al., 2014). 
 

2nd step: Singular value decomposition (SVD): in the SVD 
step, we calculate the SVD of the trajectory matrix and 
represent it as a sum of rank-one bi-orthogonal elementary 
matrixes. The covariance matrix is calculated, $ = ��%, and 
its decomposition into & eigenvalues '�, … , '( descending 
order of magnitude ('� ≥ ⋯ ≥ '( ≥ 0)  and the 
corresponding orthogonal eigenvectors , = (-�, -�, … , -() is 
obtained. Set . = max2�; such that  '� > 0; = <=>?(�) (or . = &�> 2�, �;) and @� = �% ABCB(DE) , � = 1, … , .. The SVD of 

the Hankel marix � can be written as follows: 

� = F ��
G

�H� = F I'�-�@�%
G

�H�  (2) 

Where the matrices HK have rank 1; such matrices are 
sometimes called elementary matrices. The collection 
(IϑKuKVKM) will be called i-th eigentriple of the matrix H, IϑK (i = 1, … , J) are the singular values of the matrix H. It should 
be noted that the eigenvectors of H arise from the 
autocorrelation matrix HHM, the components that present the 
most coherency in the data will be weighted by singular values 
with higher values. This way, the decomposition of the 
trajectory matrix in its singular spectrum is very useful to 
identify trends in the data. Also, given that the signal in the 
time series is correlated between time-lagged windows, it will 
be represented by the largest singular values. Thus, singular 
values with less weight can be considered as noise 
components, making possible the use of this tool in noise 
suppression of time series (Oropeza and Sacchi, 2011). 
 

Second stage: Reconstruction 
  
1st step: Grouping: after obtaining the elementary matrixes in 
the previous stage, the grouping operation divides the set of 
indices 21, 2, … , J; into n disjoint subsets I�, … , IS. Let I = 2i�, … , iT;, for d < �, be a group of indices i�, … , iT. 
Then, the matrix HW corresponding to the group X is defined as �Y = ��� + ⋯ + ��Z. These matrixes are calculated for X = X�, … , X[ and the expansion (1) leads to the decomposition  
 � = �Y� +  … + �Y[ (3) 
The process of choosing the set is called the Eigen-triple 
grouping.  

 
2st step: Diagonal averaging: The purpose of diagonal 
averaging or Hankelization is to transform a matrix to the 
form of a Hankel matrix, which can be subsequently converted 
to a time series length �. For a typical � × � matrix � with 
elements ℎ�], 1 ≤ � ≤ �, 1 ≤ _ ≤ �, we set �∗ =min (�, �), �∗ = max (�, �) and  � = � + � − 1. By 
making the diagonal averaging we transfer the matrix � into 
the series ̀�, … , `� through the following formula: 
 

 
The whole procedure of the SSA scheme strongly depends 
upon two basic parameters that must be assigned or chosen by 
the practitioner, namely, (i) the window length of the 
embedding and (ii) the number of singular values (a modeling 
parameter). Certainly, the values chosen for � and ℛ will 
interact one with another so as to effect performance and it is 
vital to ensure that the techniques employed for assignment 
and choice of the two parameters yield appropriate 
separability between signal and noise components as well as 
minimize reconstruction error. Standard practice in SSA is to 
use a value for the window length large enough to ensure that 
the signal and noise components are strongly separated. 
Several attempts have been made in the mathematical context 
to select the appropriate values of parameters � and ℛ. To 
obtain the optimal values of � and ℛ, we consider the 
separability between signal and noise components which is an 
indispensable concept in studying SSA properties. The degree 
of approximate separability between two signals b(�) and b(�) 
is quantified by the so-called weighted-correlation (or W-
correlation) criterion which is defined as follows: 
 

ρ�,�d = ∑ Wg�,hbg(�)bg(�)hgH�i∑ Wg�,hhgH� (bg(�))� × ∑ Wg�,hhgH� (bg(�))� (5) 

 
     
Where Wg�,h = min 2j, N − j + 1; and 2 < � < N − 1. 
If the absolute value of the W-correlations is small, then the 
corresponding signals are almost W-orthogonal, but, if it is 
large, then the two signals are far from being W-orthogonal 
and are therefore weakly separable. In other words, the value 
of the W-correlations indicates that how the reconstructed 
signal has been separated from the noise component.  
 
Numerical results 
 
In this section, to demonstrate the functionality of the 
proposed algorithms, numerical experiments from the 
modeling of a synthetic signal added to real noise recordings 
are tested. The quality of the reconstructions is measured in 
terms of the signal to noise ratio (SNR) in decibels (dB). In 
addition, the mean absolute percentage error (MAPE) is 
quoted in this paper for evaluating estimation accuracy. In 
brief, the lower the MAPE value, the better the performance. 

MAPE = 1N F p100 × (s(tK) − sq(tK))s(tK) ph
KH� , (6) 

`r =
stt
tu
ttt
v 1? F `(&, ? − & + 1)    r

(H�                        wx<  1 ≤ ? ≤ �∗ − 1
1�∗  F `(&, ? − & + 1)   �∗

(H�                   wx<    �∗ ≤ ? ≤ �∗
1� − ? + 1 F `(&, ? − & + 1) �∗

(Hr��∗��  wx<   �∗ + 1 ≤ ? ≤ �
y (4) 
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Where sq(tK) is the reconstructed signal (the processed and 
stacked signal) and s(tK) is the original signal. 35 recorded 
noises received by the Numis-Poly system are used to be fully 
ensured of the noise simulation instead of producing artificial 
noises. The synthetic surface-NMR signal with V� = 200 nV, T�∗ = 250 ms, F� = 2138 Hz and ϕ = 1.03 rad is simulated 
through Eq. (7), and then the noise-only recodes are added to 
it.  
 V(t) = V�exp (−t/T�∗)cos (2πF�t + ϕ) (7) 
 
In Eq. (7), the initial amplitude and decay time of the FID 
signal is denoted by V� and T�∗, the phase of the retrieved 
signal enters as ϕ, F� indicates the Larmor frequency. 
It is well-known that by increasing the stack size further 
reduction of the coherence noise is provided. This is caused by 
the fact, that the phases of the power-line harmonics randomly 
changed in every single stack, so that the energy at the 
harmonic frequencies is diminished during the stacking 
process (Strehl, 2006). Hence, the proposed de-noising 
algorithm is implemented on the stacked signal. the 
corresponding surface-NMR signal is generated using the 
stacking of the synthetic MRS signal superimposed on real 
MRS noise records, as shown in Figure 1 (grey). Knowing the 
significance of the appropriate choice of � and ℛ from the 
previous section, we use the W-correlation criterion to obtain 
the optimal values of the two parameters, leading eventually to 
better reconstruction of the surface-NMR signal. According to 
the results derived from the W-correlation criterion (not 
shown here), we can conclude that choosing window length 
equal to 5223 and ℛ equal to 2 gives best separation between 
signal and noise components. On the other hand, the W-
correlation value in terms of a fixed value of ℛ for large and 
small values of � is far away from the minimum W-
correlation. Here, we use as signal the reconstructed series 
containing optimal ℛ components and select the remaining ℛ, 
which does not belong to the reconstruction, as noise. The 
result of SSA-based filtering with the optimum values of 
parameters � and ℛ is presented in Figure 1 (black). ). In this 
Figure it is possible to observe the characteristics of a MRS 
signal. Figure 2 displays the power spectrum corresponding to 
a single, unfiltered noise-only record with synthetic signal 
added (black), unfiltered and stacked signal (blue) as well as 
filtered and stacked signal (grey). It can be seen that the 
power-line harmonics have been considerably removed 
through the proposed SSA based de-noising algorithm. The 
peak at the Larmor frequency is left undisturbed. In addition, 
the signal-to-noise ratio increases from 0.36 dB (related to the 
noisy FID signal) to 19.7 dB. When comparing the spectrum 
of the single, unprocessed record and the corresponding 
spectrum of the stacked and unprocessed signal, we note that 
the stacking operation has led to a partly reduction of the 
power-line harmonics. After the application of the SSA based 
filtering, the next step is the envelope detection and fitting the 
envelope to the mono-exponential decay. Here, the digital 
quadrature detection with phase correction is used to extract 
the MRS signal envelope. Subsequently, in order to estimate 
the signal parameters, a non-linear optimization problem 
based on the regularized Levenberg–Marquardt method 
(Chavent, 2009) must be used. The fitting yields the relaxation 
time T�∗ and the initial value after the end of the excitation 
signal. Representative results from the proposed method to 
retrieve the MRS signal parameters are reported in Table 1. 
For comparison the MRS signal has been also recovered in the 
case where no processing has been carried out. One can see 
that the value of MAPE obtained by using the proposed 
algorithm is lower than that of merely use of pure stacking 

(plain averaging over the signal records). Moreover, in Figures 
3(a)-(b), the signal envelope (dark line) and exponential decay 
curve (red line) defined by the fit-parameters V� and T�∗ to the 
signal envelope associated to the unfiltered and filtered signal 
are illustrated.  
 

CONCLUSIONS 
 

In this paper, we suggested an efficient post-processing 
workflow based on the singular spectrum analysis for 
attenuating stochastic and harmonic noises from surface-NMR 
measurements which leads to an increase in the accuracy of 
the parameter estimation. The SSA algorithm contains two 
stages referred to as Decomposition and Reconstruction, 
whilst the two choices are known as the window length � and 
the number of singular values ℛ. Each of the two stages 
includes two separate steps known as Embedding operation, 
Singular Value Decomposition (SVD) and, grouping and 
Diagonal averaging. We considered the concept of separability 
between the signal and noise components through measure of 
weighted-correlation criterion to determine the optimal value 
of parameters � and ℛ. The digital quadrature detection with 
phase correction was used to extract the envelope of the FID 
signal. Subsequently, we applied a non-linear optimization 
problem based on the regularized Levenberg–Marquardt 
method to the mono-exponential decay curve to estimate the 
signal parameters. The results of numerical experiments from 
applying the proposed filtering approach to the real noise-only 
measurements and synthetic signal added to noise-only 
records confirmed relatively high performance of the proposed 
scheme in suppression of electromagnetic interferences that 
allows more accurate retrieval of the model parameters. 
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Figure 1. The unprocessed synthetic MRS curve (stack of 
32 records) is grey and the processed signal using the SSA 
algorithm is black. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Representation of the power spectral density 
corresponding to a single, unfilterled noise-only record 
with synthetic signal added (black), unfilterd and stacked 
signal (blue) and filterd and stacked signal (grey). The 
Larmor frequency is indicated in the figure by grey line. 

 
 
Figure 3. FID curves before (a) and after (b) the 
application of the SSA-based de-noising algorithm. 
Oscillating gray line, simulated time series; black line, 
signal envelope; red line, exponential decay curve defined 
by the fit-parameters �� and ��∗ ; dot, initial amplitude of 
the estimated signal.  
 

Model 
Parameters 

Estimated 
Parameters via 
Pure Staking 

Estimated 
Parameters via 

SSA-Based 
Filtering @� 187.1 197.82 ��∗ 288.8 258.9 �� 2237.02 2237.9 � 0.92 0.993 MAPE� �%� 8.89 0.71 

    a MAPE: Mean Absolute Percentage Error 

Table 1. Estimated value of the four parameters using 
pure stacking  and SSA-based filtering method on a 
synthetic MRS signal corrupted by noise-only recordings.


